{"title":"弹性软材料的合成与疲劳特性的关系","authors":"Yecheng Wang , Danqi Sun","doi":"10.1016/j.jmps.2024.105894","DOIUrl":null,"url":null,"abstract":"<div><div>Fatigue has long been studied for many materials, but many aspects are not well understood. Our recent study of the distinct roles of crosslinks and entanglements in the synthesis-property relation of a polymer network under monotonic load leads to a fundamental question: how do crosslinks and entanglements affect the synthesis-property relation of a polymer network under cyclic load? Here we study the relation of synthesis and fatigue property of elastic soft materials without precut cracks. We prepare polyacrylamide hydrogels by free radical polymerization as a model system, and swell the hydrogels in water to equilibrium or to a certain amount of polymer content. The synthesis parameters include the crosslinker-to-monomer molar ratio and the water-to-monomer molar ratio in the precursor, as well as the polymer content in the hydrogel. Three series of hydrogels are prepared. For each hydrogel, the stress-stretch curve under cyclic stretch of various amplitudes and the number of cycles to rupture are measured, giving four properties: fatigue life, endurance stretch, endurance stress, and endurance work. When the crosslinker-to-monomer molar ratio in the precursor is high, the degree of network imperfection on average is low. When the water-to-monomer molar ratio in the precursor is low, the number of entanglements per polymer segment on average is large. We show that crosslinks decrease the susceptibility to fatigue and entanglements increase the endurance stress. By contrast, both crosslinks and entanglements negligibly affect the endurance stretch and the endurance work.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105894"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation of synthesis and fatigue property in elastic soft materials\",\"authors\":\"Yecheng Wang , Danqi Sun\",\"doi\":\"10.1016/j.jmps.2024.105894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fatigue has long been studied for many materials, but many aspects are not well understood. Our recent study of the distinct roles of crosslinks and entanglements in the synthesis-property relation of a polymer network under monotonic load leads to a fundamental question: how do crosslinks and entanglements affect the synthesis-property relation of a polymer network under cyclic load? Here we study the relation of synthesis and fatigue property of elastic soft materials without precut cracks. We prepare polyacrylamide hydrogels by free radical polymerization as a model system, and swell the hydrogels in water to equilibrium or to a certain amount of polymer content. The synthesis parameters include the crosslinker-to-monomer molar ratio and the water-to-monomer molar ratio in the precursor, as well as the polymer content in the hydrogel. Three series of hydrogels are prepared. For each hydrogel, the stress-stretch curve under cyclic stretch of various amplitudes and the number of cycles to rupture are measured, giving four properties: fatigue life, endurance stretch, endurance stress, and endurance work. When the crosslinker-to-monomer molar ratio in the precursor is high, the degree of network imperfection on average is low. When the water-to-monomer molar ratio in the precursor is low, the number of entanglements per polymer segment on average is large. We show that crosslinks decrease the susceptibility to fatigue and entanglements increase the endurance stress. By contrast, both crosslinks and entanglements negligibly affect the endurance stretch and the endurance work.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105894\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003600\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003600","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Relation of synthesis and fatigue property in elastic soft materials
Fatigue has long been studied for many materials, but many aspects are not well understood. Our recent study of the distinct roles of crosslinks and entanglements in the synthesis-property relation of a polymer network under monotonic load leads to a fundamental question: how do crosslinks and entanglements affect the synthesis-property relation of a polymer network under cyclic load? Here we study the relation of synthesis and fatigue property of elastic soft materials without precut cracks. We prepare polyacrylamide hydrogels by free radical polymerization as a model system, and swell the hydrogels in water to equilibrium or to a certain amount of polymer content. The synthesis parameters include the crosslinker-to-monomer molar ratio and the water-to-monomer molar ratio in the precursor, as well as the polymer content in the hydrogel. Three series of hydrogels are prepared. For each hydrogel, the stress-stretch curve under cyclic stretch of various amplitudes and the number of cycles to rupture are measured, giving four properties: fatigue life, endurance stretch, endurance stress, and endurance work. When the crosslinker-to-monomer molar ratio in the precursor is high, the degree of network imperfection on average is low. When the water-to-monomer molar ratio in the precursor is low, the number of entanglements per polymer segment on average is large. We show that crosslinks decrease the susceptibility to fatigue and entanglements increase the endurance stress. By contrast, both crosslinks and entanglements negligibly affect the endurance stretch and the endurance work.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.