{"title":"基于加权 K 近邻的局部密度,用于密度峰聚类","authors":"Sifan Ding , Min Li , Tianyi Huang , William Zhu","doi":"10.1016/j.knosys.2024.112609","DOIUrl":null,"url":null,"abstract":"<div><div>Density peaks clustering (DPC), a traditional density-based clustering algorithm, has received considerable attention in recent years. DPC identifies clusters by designating density peaks, defined by local density, as cluster centers. However, DPC and its variants often struggle to identify high-density peaks, particularly in datasets with arbitrarily complex shapes. To address this issue, we propose a novel local density measure based on weighted K-nearest neighbors (KNN). First, we construct a new similarity measure, termed the constrained kernel rank-order distance, to determine the KNNs of each point. Next, we develop the concept of weighted KNNs by assigning a weight to each point, representing the probability of it becoming a KNN to other points. Subsequently, we redefine the local density based on the weighted KNN. Finally, we integrate this new local density measure into the DPC framework. Experiments demonstrate that the proposed algorithm outperforms existing DPC algorithms in terms of effectiveness. The source code can be downloaded from <span><span>https://github.com/Gedanke/dpcCode</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"305 ","pages":"Article 112609"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local density based on weighted K-nearest neighbors for density peaks clustering\",\"authors\":\"Sifan Ding , Min Li , Tianyi Huang , William Zhu\",\"doi\":\"10.1016/j.knosys.2024.112609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Density peaks clustering (DPC), a traditional density-based clustering algorithm, has received considerable attention in recent years. DPC identifies clusters by designating density peaks, defined by local density, as cluster centers. However, DPC and its variants often struggle to identify high-density peaks, particularly in datasets with arbitrarily complex shapes. To address this issue, we propose a novel local density measure based on weighted K-nearest neighbors (KNN). First, we construct a new similarity measure, termed the constrained kernel rank-order distance, to determine the KNNs of each point. Next, we develop the concept of weighted KNNs by assigning a weight to each point, representing the probability of it becoming a KNN to other points. Subsequently, we redefine the local density based on the weighted KNN. Finally, we integrate this new local density measure into the DPC framework. Experiments demonstrate that the proposed algorithm outperforms existing DPC algorithms in terms of effectiveness. The source code can be downloaded from <span><span>https://github.com/Gedanke/dpcCode</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"305 \",\"pages\":\"Article 112609\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012437\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012437","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Local density based on weighted K-nearest neighbors for density peaks clustering
Density peaks clustering (DPC), a traditional density-based clustering algorithm, has received considerable attention in recent years. DPC identifies clusters by designating density peaks, defined by local density, as cluster centers. However, DPC and its variants often struggle to identify high-density peaks, particularly in datasets with arbitrarily complex shapes. To address this issue, we propose a novel local density measure based on weighted K-nearest neighbors (KNN). First, we construct a new similarity measure, termed the constrained kernel rank-order distance, to determine the KNNs of each point. Next, we develop the concept of weighted KNNs by assigning a weight to each point, representing the probability of it becoming a KNN to other points. Subsequently, we redefine the local density based on the weighted KNN. Finally, we integrate this new local density measure into the DPC framework. Experiments demonstrate that the proposed algorithm outperforms existing DPC algorithms in terms of effectiveness. The source code can be downloaded from https://github.com/Gedanke/dpcCode.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.