静态斯托克斯数据同化问题的消隐正则化方法

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Hatem Zayeni , Amel Ben Abda , Franck Delvare
{"title":"静态斯托克斯数据同化问题的消隐正则化方法","authors":"Hatem Zayeni ,&nbsp;Amel Ben Abda ,&nbsp;Franck Delvare","doi":"10.1016/j.cma.2024.117450","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we address the ill-posed stationary Stokes data assimilation (DA) problem using the fading regularization method (FRM). It involves reconstructing the fluid velocity field throughout the study domain <span><math><mi>Ω</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <span><math><mi>n</mi></math></span> is the dimension of the space, as well as the boundary conditions, using knowledge of some observations of the fluid velocity field <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>o</mi><mi>b</mi><mi>s</mi></mrow></msup></math></span> measured within a limited domain <span><math><mi>ω</mi></math></span> included in <span><math><mi>Ω</mi></math></span>. Using the FRM, the main ill-posed problem is transformed into a sequence of well-posed constraint optimization problems and simplifies the resolution of DA problem. Additionally, we prove the convergence of both the continuous and the discrete formulations. This method is implemented numerically using the method of fundamental solutions (MFS) and several numerical simulations are shown to illustrate the performance of the algorithm in terms of efficiency, accuracy, convergence, stability, and robustness to noisy data, as well as its ability to deblur the data in <span><math><mi>ω</mi></math></span>.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117450"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fading regularization method for the stationary Stokes data assimilation problem\",\"authors\":\"Hatem Zayeni ,&nbsp;Amel Ben Abda ,&nbsp;Franck Delvare\",\"doi\":\"10.1016/j.cma.2024.117450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we address the ill-posed stationary Stokes data assimilation (DA) problem using the fading regularization method (FRM). It involves reconstructing the fluid velocity field throughout the study domain <span><math><mi>Ω</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <span><math><mi>n</mi></math></span> is the dimension of the space, as well as the boundary conditions, using knowledge of some observations of the fluid velocity field <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>o</mi><mi>b</mi><mi>s</mi></mrow></msup></math></span> measured within a limited domain <span><math><mi>ω</mi></math></span> included in <span><math><mi>Ω</mi></math></span>. Using the FRM, the main ill-posed problem is transformed into a sequence of well-posed constraint optimization problems and simplifies the resolution of DA problem. Additionally, we prove the convergence of both the continuous and the discrete formulations. This method is implemented numerically using the method of fundamental solutions (MFS) and several numerical simulations are shown to illustrate the performance of the algorithm in terms of efficiency, accuracy, convergence, stability, and robustness to noisy data, as well as its ability to deblur the data in <span><math><mi>ω</mi></math></span>.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117450\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007059\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007059","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们利用消隐正则化方法(FRM)解决了问题严重的静态斯托克斯数据同化(DA)问题。它涉及利用在 Ω 中包含的有限域 ω 内测量到的流体速度场 uobs 的一些观测数据,重建 Rn 中整个研究域 Ω 的流体速度场(其中 n 是空间维度)以及边界条件。此外,我们还证明了连续和离散公式的收敛性。我们使用基本解法(MFS)对该方法进行了数值实现,并通过若干数值模拟说明了该算法在效率、准确性、收敛性、稳定性、对噪声数据的鲁棒性等方面的性能,以及它在ω中去除数据模糊的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fading regularization method for the stationary Stokes data assimilation problem
In this study, we address the ill-posed stationary Stokes data assimilation (DA) problem using the fading regularization method (FRM). It involves reconstructing the fluid velocity field throughout the study domain Ω in Rn, where n is the dimension of the space, as well as the boundary conditions, using knowledge of some observations of the fluid velocity field uobs measured within a limited domain ω included in Ω. Using the FRM, the main ill-posed problem is transformed into a sequence of well-posed constraint optimization problems and simplifies the resolution of DA problem. Additionally, we prove the convergence of both the continuous and the discrete formulations. This method is implemented numerically using the method of fundamental solutions (MFS) and several numerical simulations are shown to illustrate the performance of the algorithm in terms of efficiency, accuracy, convergence, stability, and robustness to noisy data, as well as its ability to deblur the data in ω.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信