{"title":"来自叶片放线菌 MM794L-181F6 的新型噻唑肽抗生素 Thiazoplanomicin。","authors":"Yasuhiro Takehana, Hideyuki Muramatsu, Masaki Hatano, Yoshimasa Ishizaki, Maya Umekita, Yuko Shibuya, Chigusa Hayashi, Tomoyuki Kimura, Toshifumi Takeuchi, Ken Shimuta, Ryuichi Sawa, Masayuki Igarashi","doi":"10.1038/s41429-024-00783-7","DOIUrl":null,"url":null,"abstract":"<p><p>A new bioactive substance was identified from a leaf-litter actinomycete strain by screening for antibacterial activity against Neisseria gonorrhoeae. The thiazolyl peptide antibiotic, named thiazoplanomicin, was isolated from the secondary metabolites of the leaf-litter actinomycetes Actinoplanes sp. MM794L-181F6 by extraction with n-butanol, silica gel column chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Thiazoplanomicin was characterized by LC-HR-ESI-MS, NMR, and X-ray analyses, along with analysis of the degradation products and chemical derivatives, and determined to be a nocathiacin-like multiple macrocyclic thiazolyl peptide. Thiazoplanomicin showed potent antimicrobial activity against gonococcal strains, including those resistant to known anti-gonococcal compounds such as telithromycin, azithromycin, and ceftriaxone, with MIC values ranging from 0.0312 to 0.125 µg ml<sup>-1</sup>. Such anti-gonococcal activity has not been reported on nocathiacin-like thiazolyl peptide antibiotic so far. Similar to other thiazolyl peptide antibiotics, thiazoplanomicin also showed potent antibacterial activity against Gram-positive bacteria with MIC values ranging from 0.0005 to 0.0156 µg ml<sup>-1</sup> but showed no antibacterial activity against Escherichia coli.</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiazoplanomicin, a new thiazolyl peptide antibiotic from the leaf-litter actinomycete Actinoplanes sp. MM794L-181F6.\",\"authors\":\"Yasuhiro Takehana, Hideyuki Muramatsu, Masaki Hatano, Yoshimasa Ishizaki, Maya Umekita, Yuko Shibuya, Chigusa Hayashi, Tomoyuki Kimura, Toshifumi Takeuchi, Ken Shimuta, Ryuichi Sawa, Masayuki Igarashi\",\"doi\":\"10.1038/s41429-024-00783-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new bioactive substance was identified from a leaf-litter actinomycete strain by screening for antibacterial activity against Neisseria gonorrhoeae. The thiazolyl peptide antibiotic, named thiazoplanomicin, was isolated from the secondary metabolites of the leaf-litter actinomycetes Actinoplanes sp. MM794L-181F6 by extraction with n-butanol, silica gel column chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Thiazoplanomicin was characterized by LC-HR-ESI-MS, NMR, and X-ray analyses, along with analysis of the degradation products and chemical derivatives, and determined to be a nocathiacin-like multiple macrocyclic thiazolyl peptide. Thiazoplanomicin showed potent antimicrobial activity against gonococcal strains, including those resistant to known anti-gonococcal compounds such as telithromycin, azithromycin, and ceftriaxone, with MIC values ranging from 0.0312 to 0.125 µg ml<sup>-1</sup>. Such anti-gonococcal activity has not been reported on nocathiacin-like thiazolyl peptide antibiotic so far. Similar to other thiazolyl peptide antibiotics, thiazoplanomicin also showed potent antibacterial activity against Gram-positive bacteria with MIC values ranging from 0.0005 to 0.0156 µg ml<sup>-1</sup> but showed no antibacterial activity against Escherichia coli.</p>\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41429-024-00783-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-024-00783-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
通过筛选叶片放线菌对淋病奈瑟菌的抗菌活性,从一株叶片放线菌中发现了一种新的生物活性物质。通过正丁醇提取、硅胶柱层析、Sephadex LH-20 柱层析和制备型高效液相色谱法,从叶片放线菌 Actinoplanes sp.通过 LC-HR-ESI-MS、NMR 和 X 射线分析以及降解产物和化学衍生物分析,对噻唑啉酮进行了表征,并确定它是一种类似于诺卡他辛的多重大环噻唑肽。噻唑帕诺米星对淋球菌菌株(包括那些对已知的抗淋球菌化合物(如泰利霉素、阿奇霉素和头孢曲松)耐药的菌株)显示出强大的抗菌活性,其 MIC 值范围为 0.0312 至 0.125 µg ml-1。迄今为止,尚未有报道称诺卡西钦类噻唑啉肽抗生素具有这种抗淋球菌活性。与其他噻唑肽抗生素类似,噻唑帕诺米星对革兰氏阳性菌也显示出强大的抗菌活性,其 MIC 值介于 0.0005 至 0.0156 µg ml-1 之间,但对大肠杆菌没有抗菌活性。
Thiazoplanomicin, a new thiazolyl peptide antibiotic from the leaf-litter actinomycete Actinoplanes sp. MM794L-181F6.
A new bioactive substance was identified from a leaf-litter actinomycete strain by screening for antibacterial activity against Neisseria gonorrhoeae. The thiazolyl peptide antibiotic, named thiazoplanomicin, was isolated from the secondary metabolites of the leaf-litter actinomycetes Actinoplanes sp. MM794L-181F6 by extraction with n-butanol, silica gel column chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Thiazoplanomicin was characterized by LC-HR-ESI-MS, NMR, and X-ray analyses, along with analysis of the degradation products and chemical derivatives, and determined to be a nocathiacin-like multiple macrocyclic thiazolyl peptide. Thiazoplanomicin showed potent antimicrobial activity against gonococcal strains, including those resistant to known anti-gonococcal compounds such as telithromycin, azithromycin, and ceftriaxone, with MIC values ranging from 0.0312 to 0.125 µg ml-1. Such anti-gonococcal activity has not been reported on nocathiacin-like thiazolyl peptide antibiotic so far. Similar to other thiazolyl peptide antibiotics, thiazoplanomicin also showed potent antibacterial activity against Gram-positive bacteria with MIC values ranging from 0.0005 to 0.0156 µg ml-1 but showed no antibacterial activity against Escherichia coli.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.