{"title":"金属-费电-绝缘体-硅 (MFIS) FeFET 存储窗口上的界面陷波电荷与极化之间相互作用的实验分析","authors":"Giuk Kim;Hyojun Choi;Sangho Lee;Hunbeom Shin;Sangmok Lee;Yunseok Nam;Hyunjun Kang;Seokjoong Shin;Hoon Kim;Youngjin Lim;Kang Kim;Il-Kwon Oh;Sang-Hee Ko Park;Jinho Ahn;Sanghun Jeon","doi":"10.1109/TED.2024.3442163","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the impact of unstable and stable interface trap charges (\n<inline-formula> <tex-math>${Q}_{\\text {it}}\\text {)}$ </tex-math></inline-formula>\n on \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n switching in metal-ferroelectric–insulator-Si (MFIS) ferroelectric field-effect transistors (FeFETs), which vary with the thickness of the insulator. We also examine how these variations ultimately affect the various performance metrics of MFIS FeFETs. To achieve this, we varied the thickness of the insulator (\n<inline-formula> <tex-math>${t}_{\\text {IL}}\\text {)}$ </tex-math></inline-formula>\n in MFIS FeFETs to 1.5, 2.0, and 2.5 nm, thereby controlling the amount of \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n injected from the channel into the ferroelectric (FE)/insulator interface. As \n<inline-formula> <tex-math>${t}_{\\text {IL}}$ </tex-math></inline-formula>\n decreases, the amount of \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n increases, which amplifies the electric field across the FE layer. As a result, \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n switching enhances, and consequently, the MW characteristics of MFIS FeFETs improve. Furthermore, to analyze this in detail, we employed \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n–\n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n measurements on MFIS FeFETs to simultaneously extract unstable and stable \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n as well as \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n and MW. The results show that as \n<inline-formula> <tex-math>${t}_{\\text {IL}}$ </tex-math></inline-formula>\n increases to 1.5, 2.0, and 2.5 nm, \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n during program/erase (PGM/ERS) operations decreases to 100%, 61%, and 54%, respectively. This leads to a corresponding decrease in \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n to 100%, 59%, and 52%. Additionally, after sufficient delay following the PGM/ERS operations, we observe that the proportion stable \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n compared to \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n is 91%, regardless to \n<inline-formula> <tex-math>${t}_{\\text {IL}}$ </tex-math></inline-formula>\n and the remaining 9% of \n<inline-formula> <tex-math>${P}_{\\text {S}}$ </tex-math></inline-formula>\n contributes to the MW property. Consequently, as \n<inline-formula> <tex-math>${t}_{\\text {IL}}$ </tex-math></inline-formula>\n increases to 1.5, 2.0, and 2.5 nm, the net charge decreases to 100%, 61%, and 54%, resulting in MW values of 1.85, 1.05, and 0.85 V, respectively. Finally, we analyzed the impact of \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n generation as a function of \n<inline-formula> <tex-math>${t}_{\\text {IL}}$ </tex-math></inline-formula>\n on the variability and endurance characteristics of MFIS FeFETs.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"6627-6632"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Analysis on the Interaction Between Interface Trap Charges and Polarization on the Memory Window of Metal-Ferroelectric–Insulator-Si (MFIS) FeFET\",\"authors\":\"Giuk Kim;Hyojun Choi;Sangho Lee;Hunbeom Shin;Sangmok Lee;Yunseok Nam;Hyunjun Kang;Seokjoong Shin;Hoon Kim;Youngjin Lim;Kang Kim;Il-Kwon Oh;Sang-Hee Ko Park;Jinho Ahn;Sanghun Jeon\",\"doi\":\"10.1109/TED.2024.3442163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the impact of unstable and stable interface trap charges (\\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}\\\\text {)}$ </tex-math></inline-formula>\\n on \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n switching in metal-ferroelectric–insulator-Si (MFIS) ferroelectric field-effect transistors (FeFETs), which vary with the thickness of the insulator. We also examine how these variations ultimately affect the various performance metrics of MFIS FeFETs. To achieve this, we varied the thickness of the insulator (\\n<inline-formula> <tex-math>${t}_{\\\\text {IL}}\\\\text {)}$ </tex-math></inline-formula>\\n in MFIS FeFETs to 1.5, 2.0, and 2.5 nm, thereby controlling the amount of \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n injected from the channel into the ferroelectric (FE)/insulator interface. As \\n<inline-formula> <tex-math>${t}_{\\\\text {IL}}$ </tex-math></inline-formula>\\n decreases, the amount of \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n increases, which amplifies the electric field across the FE layer. As a result, \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n switching enhances, and consequently, the MW characteristics of MFIS FeFETs improve. Furthermore, to analyze this in detail, we employed \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n–\\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n measurements on MFIS FeFETs to simultaneously extract unstable and stable \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n as well as \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n and MW. The results show that as \\n<inline-formula> <tex-math>${t}_{\\\\text {IL}}$ </tex-math></inline-formula>\\n increases to 1.5, 2.0, and 2.5 nm, \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n during program/erase (PGM/ERS) operations decreases to 100%, 61%, and 54%, respectively. This leads to a corresponding decrease in \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n to 100%, 59%, and 52%. Additionally, after sufficient delay following the PGM/ERS operations, we observe that the proportion stable \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n compared to \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n is 91%, regardless to \\n<inline-formula> <tex-math>${t}_{\\\\text {IL}}$ </tex-math></inline-formula>\\n and the remaining 9% of \\n<inline-formula> <tex-math>${P}_{\\\\text {S}}$ </tex-math></inline-formula>\\n contributes to the MW property. Consequently, as \\n<inline-formula> <tex-math>${t}_{\\\\text {IL}}$ </tex-math></inline-formula>\\n increases to 1.5, 2.0, and 2.5 nm, the net charge decreases to 100%, 61%, and 54%, resulting in MW values of 1.85, 1.05, and 0.85 V, respectively. Finally, we analyzed the impact of \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n generation as a function of \\n<inline-formula> <tex-math>${t}_{\\\\text {IL}}$ </tex-math></inline-formula>\\n on the variability and endurance characteristics of MFIS FeFETs.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 11\",\"pages\":\"6627-6632\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689519/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10689519/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Experimental Analysis on the Interaction Between Interface Trap Charges and Polarization on the Memory Window of Metal-Ferroelectric–Insulator-Si (MFIS) FeFET
In this study, we investigated the impact of unstable and stable interface trap charges (
${Q}_{\text {it}}\text {)}$
on
${P}_{\text {S}}$
switching in metal-ferroelectric–insulator-Si (MFIS) ferroelectric field-effect transistors (FeFETs), which vary with the thickness of the insulator. We also examine how these variations ultimately affect the various performance metrics of MFIS FeFETs. To achieve this, we varied the thickness of the insulator (
${t}_{\text {IL}}\text {)}$
in MFIS FeFETs to 1.5, 2.0, and 2.5 nm, thereby controlling the amount of
${Q}_{\text {it}}$
injected from the channel into the ferroelectric (FE)/insulator interface. As
${t}_{\text {IL}}$
decreases, the amount of
${Q}_{\text {it}}$
increases, which amplifies the electric field across the FE layer. As a result,
${P}_{\text {S}}$
switching enhances, and consequently, the MW characteristics of MFIS FeFETs improve. Furthermore, to analyze this in detail, we employed
${P}_{\text {S}}$
–
${Q}_{\text {it}}$
measurements on MFIS FeFETs to simultaneously extract unstable and stable
${Q}_{\text {it}}$
as well as
${P}_{\text {S}}$
and MW. The results show that as
${t}_{\text {IL}}$
increases to 1.5, 2.0, and 2.5 nm,
${Q}_{\text {it}}$
during program/erase (PGM/ERS) operations decreases to 100%, 61%, and 54%, respectively. This leads to a corresponding decrease in
${P}_{\text {S}}$
to 100%, 59%, and 52%. Additionally, after sufficient delay following the PGM/ERS operations, we observe that the proportion stable
${Q}_{\text {it}}$
compared to
${P}_{\text {S}}$
is 91%, regardless to
${t}_{\text {IL}}$
and the remaining 9% of
${P}_{\text {S}}$
contributes to the MW property. Consequently, as
${t}_{\text {IL}}$
increases to 1.5, 2.0, and 2.5 nm, the net charge decreases to 100%, 61%, and 54%, resulting in MW values of 1.85, 1.05, and 0.85 V, respectively. Finally, we analyzed the impact of
${Q}_{\text {it}}$
generation as a function of
${t}_{\text {IL}}$
on the variability and endurance characteristics of MFIS FeFETs.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.