Benedetta Tirone, Anna Scarabosio, Pier Luigi Surico, Pier Camillo Parodi, Fabiana D'Esposito, Alessandro Avitabile, Caterina Foti, Caterina Gagliano, Marco Zeppieri
{"title":"眶周非黑色素细胞皮肤恶性肿瘤中的靶向给药。","authors":"Benedetta Tirone, Anna Scarabosio, Pier Luigi Surico, Pier Camillo Parodi, Fabiana D'Esposito, Alessandro Avitabile, Caterina Foti, Caterina Gagliano, Marco Zeppieri","doi":"10.3390/bioengineering11101029","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted drug delivery has emerged as a transformative approach in the treatment of periorbital skin malignancies, offering the potential for enhanced efficacy and reduced side effects compared to traditional therapies. This review provides a comprehensive overview of targeted therapies in the context of periorbital malignancies, including basal cell carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, and Merkel cell carcinoma. It explores the mechanisms of action for various targeted therapies, such as monoclonal antibodies, small molecule inhibitors, and immunotherapies, and their applications in treating these malignancies. Additionally, this review addresses the management of ocular and periocular side effects associated with these therapies, emphasizing the importance of a multidisciplinary approach to minimize impact and ensure patient adherence. By integrating current findings and discussing emerging trends, this review aims to highlight the advancements in targeted drug delivery and its potential to improve treatment outcomes and quality of life for patients with periorbital skin malignancies.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504966/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted Drug Delivery in Periorbital Non-Melanocytic Skin Malignancies.\",\"authors\":\"Benedetta Tirone, Anna Scarabosio, Pier Luigi Surico, Pier Camillo Parodi, Fabiana D'Esposito, Alessandro Avitabile, Caterina Foti, Caterina Gagliano, Marco Zeppieri\",\"doi\":\"10.3390/bioengineering11101029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeted drug delivery has emerged as a transformative approach in the treatment of periorbital skin malignancies, offering the potential for enhanced efficacy and reduced side effects compared to traditional therapies. This review provides a comprehensive overview of targeted therapies in the context of periorbital malignancies, including basal cell carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, and Merkel cell carcinoma. It explores the mechanisms of action for various targeted therapies, such as monoclonal antibodies, small molecule inhibitors, and immunotherapies, and their applications in treating these malignancies. Additionally, this review addresses the management of ocular and periocular side effects associated with these therapies, emphasizing the importance of a multidisciplinary approach to minimize impact and ensure patient adherence. By integrating current findings and discussing emerging trends, this review aims to highlight the advancements in targeted drug delivery and its potential to improve treatment outcomes and quality of life for patients with periorbital skin malignancies.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11101029\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Targeted Drug Delivery in Periorbital Non-Melanocytic Skin Malignancies.
Targeted drug delivery has emerged as a transformative approach in the treatment of periorbital skin malignancies, offering the potential for enhanced efficacy and reduced side effects compared to traditional therapies. This review provides a comprehensive overview of targeted therapies in the context of periorbital malignancies, including basal cell carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, and Merkel cell carcinoma. It explores the mechanisms of action for various targeted therapies, such as monoclonal antibodies, small molecule inhibitors, and immunotherapies, and their applications in treating these malignancies. Additionally, this review addresses the management of ocular and periocular side effects associated with these therapies, emphasizing the importance of a multidisciplinary approach to minimize impact and ensure patient adherence. By integrating current findings and discussing emerging trends, this review aims to highlight the advancements in targeted drug delivery and its potential to improve treatment outcomes and quality of life for patients with periorbital skin malignancies.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering