{"title":"测量重现性和储存对装饰材料挥发性有机化合物/挥发性有机化合物排放率的影响。","authors":"Nouha Zine Filali , Tamara Braish , Yves Andres , Nadine Locoge","doi":"10.1016/j.chemosphere.2024.143607","DOIUrl":null,"url":null,"abstract":"<div><div>Building materials are the major sources of Volatile and Semi-Volatile Organic Compounds (VOCs and SVOCs) in indoor air. Measurements of emission rates of these compounds are likely to be influenced by variation in certain environmental factors resulting in intra-specimen variability. This study aims to (i) evaluate the reproducibility of measurements between specimens and (ii) evaluate the impact of storage on VOC and SVOC emissions from antifungal acrylic paint (applied on polyester-cellulose). For this purpose, 15 discs of tested materials (1.63 ± 0.04 g) were prepared. From these, the emissions rates (ER) of 5 samples were analyzed simultaneously during three measurement campaigns (October 2021, January 2022 and March 2022). Between each campaign, specimens were stored in the dark at ambient temperature (25 ± 4 °C) and relative humidity (50 ± 20 %). Measurements were performed using the field and laboratory emission cell (FLEC) and characterized by gas chromatography (TD-GC-MS/FID) and liquid chromatography (HPLC). Intra-specimen reproducibility was assessed by comparing 5 ER of different specimens collected simultaneously. The impact of storage was evaluated by comparing the average VOC/SVOC ER between each campaign. The results show, concerning the reproducibility of the measurements, that the first measurement campaign provides ER with high variability (10–36 %) compared to the second and third measurement campaigns, which show lower intra-specimen variability (5–24 % and 8–20 % respectively). However, weakly emitted compounds (ER < 10 μg m<sup>−2</sup> h<sup>−1</sup>) such as aromatics and aldehydes show large variabilities (6–100 % of variation) in all measurement campaigns. Regarding the effect of the 5-months storage a significant decrease in the ER of individual VOC/SVOCs (37–85 %) and of TVOCs (74 %) was noted, except for aldehydes, aromatic hydrocarbons, isopropylacetone and vinyl crotonate, which showed a stability or eventual increase (up to 100 %) in the ER over time, depending on the type of emitted compound.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143607"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement reproducibility and storage impact on VOC/SVOC emission rate from decorative materials\",\"authors\":\"Nouha Zine Filali , Tamara Braish , Yves Andres , Nadine Locoge\",\"doi\":\"10.1016/j.chemosphere.2024.143607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Building materials are the major sources of Volatile and Semi-Volatile Organic Compounds (VOCs and SVOCs) in indoor air. Measurements of emission rates of these compounds are likely to be influenced by variation in certain environmental factors resulting in intra-specimen variability. This study aims to (i) evaluate the reproducibility of measurements between specimens and (ii) evaluate the impact of storage on VOC and SVOC emissions from antifungal acrylic paint (applied on polyester-cellulose). For this purpose, 15 discs of tested materials (1.63 ± 0.04 g) were prepared. From these, the emissions rates (ER) of 5 samples were analyzed simultaneously during three measurement campaigns (October 2021, January 2022 and March 2022). Between each campaign, specimens were stored in the dark at ambient temperature (25 ± 4 °C) and relative humidity (50 ± 20 %). Measurements were performed using the field and laboratory emission cell (FLEC) and characterized by gas chromatography (TD-GC-MS/FID) and liquid chromatography (HPLC). Intra-specimen reproducibility was assessed by comparing 5 ER of different specimens collected simultaneously. The impact of storage was evaluated by comparing the average VOC/SVOC ER between each campaign. The results show, concerning the reproducibility of the measurements, that the first measurement campaign provides ER with high variability (10–36 %) compared to the second and third measurement campaigns, which show lower intra-specimen variability (5–24 % and 8–20 % respectively). However, weakly emitted compounds (ER < 10 μg m<sup>−2</sup> h<sup>−1</sup>) such as aromatics and aldehydes show large variabilities (6–100 % of variation) in all measurement campaigns. Regarding the effect of the 5-months storage a significant decrease in the ER of individual VOC/SVOCs (37–85 %) and of TVOCs (74 %) was noted, except for aldehydes, aromatic hydrocarbons, isopropylacetone and vinyl crotonate, which showed a stability or eventual increase (up to 100 %) in the ER over time, depending on the type of emitted compound.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"367 \",\"pages\":\"Article 143607\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524025074\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025074","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Measurement reproducibility and storage impact on VOC/SVOC emission rate from decorative materials
Building materials are the major sources of Volatile and Semi-Volatile Organic Compounds (VOCs and SVOCs) in indoor air. Measurements of emission rates of these compounds are likely to be influenced by variation in certain environmental factors resulting in intra-specimen variability. This study aims to (i) evaluate the reproducibility of measurements between specimens and (ii) evaluate the impact of storage on VOC and SVOC emissions from antifungal acrylic paint (applied on polyester-cellulose). For this purpose, 15 discs of tested materials (1.63 ± 0.04 g) were prepared. From these, the emissions rates (ER) of 5 samples were analyzed simultaneously during three measurement campaigns (October 2021, January 2022 and March 2022). Between each campaign, specimens were stored in the dark at ambient temperature (25 ± 4 °C) and relative humidity (50 ± 20 %). Measurements were performed using the field and laboratory emission cell (FLEC) and characterized by gas chromatography (TD-GC-MS/FID) and liquid chromatography (HPLC). Intra-specimen reproducibility was assessed by comparing 5 ER of different specimens collected simultaneously. The impact of storage was evaluated by comparing the average VOC/SVOC ER between each campaign. The results show, concerning the reproducibility of the measurements, that the first measurement campaign provides ER with high variability (10–36 %) compared to the second and third measurement campaigns, which show lower intra-specimen variability (5–24 % and 8–20 % respectively). However, weakly emitted compounds (ER < 10 μg m−2 h−1) such as aromatics and aldehydes show large variabilities (6–100 % of variation) in all measurement campaigns. Regarding the effect of the 5-months storage a significant decrease in the ER of individual VOC/SVOCs (37–85 %) and of TVOCs (74 %) was noted, except for aldehydes, aromatic hydrocarbons, isopropylacetone and vinyl crotonate, which showed a stability or eventual increase (up to 100 %) in the ER over time, depending on the type of emitted compound.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.