Erika Hudacova , Pavel Abaffy , Mehmet Mahsum Kaplan , Michaela Krausova , Mikael Kubista , Ondrej Machon
{"title":"单细胞转录组解析颅面形态发生过程中的成骨过程","authors":"Erika Hudacova , Pavel Abaffy , Mehmet Mahsum Kaplan , Michaela Krausova , Mikael Kubista , Ondrej Machon","doi":"10.1016/j.bone.2024.117297","DOIUrl":null,"url":null,"abstract":"<div><div>Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of <em>Meis2</em>-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"190 ","pages":"Article 117297"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis\",\"authors\":\"Erika Hudacova , Pavel Abaffy , Mehmet Mahsum Kaplan , Michaela Krausova , Mikael Kubista , Ondrej Machon\",\"doi\":\"10.1016/j.bone.2024.117297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of <em>Meis2</em>-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.</div></div>\",\"PeriodicalId\":9301,\"journal\":{\"name\":\"Bone\",\"volume\":\"190 \",\"pages\":\"Article 117297\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S8756328224002862\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002862","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.