{"title":"骨骼中的 AGEs(高级糖化终产物)逐渐老化。","authors":"Deepak Vashishth , Ruban Dhaliwal , Mishaela Rubin","doi":"10.1016/j.bone.2024.117301","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced Glycation End-products (AGEs) are seen in long-lived proteins and were not expected to accumulate in the bone that turnovers and renews itself. Here, we provide a commentary on the contrary, highlighting the <em>Special Issue of AGEs in Bone</em><strong>.</strong> An outcome of hyperglycemia and increased oxidative stress, AGEs form and accumulate by altering the bone resorption and formation processes. Accumulation of various AGEs species in bone increases bone fragility through the stiffening of the collagen network and, potentially, through the changes in collagen-mineral interactions. Evidence from both preclinical and clinical studies is leading to new translational approaches wherein measurement, inhibition, or removal of AGEs show the potential to diagnose, manage, and treat bone fragility associated with multiple conditions and diseases.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"190 ","pages":"Article 117301"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AGEs (Advanced Glycation End-products) in bone come of age\",\"authors\":\"Deepak Vashishth , Ruban Dhaliwal , Mishaela Rubin\",\"doi\":\"10.1016/j.bone.2024.117301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advanced Glycation End-products (AGEs) are seen in long-lived proteins and were not expected to accumulate in the bone that turnovers and renews itself. Here, we provide a commentary on the contrary, highlighting the <em>Special Issue of AGEs in Bone</em><strong>.</strong> An outcome of hyperglycemia and increased oxidative stress, AGEs form and accumulate by altering the bone resorption and formation processes. Accumulation of various AGEs species in bone increases bone fragility through the stiffening of the collagen network and, potentially, through the changes in collagen-mineral interactions. Evidence from both preclinical and clinical studies is leading to new translational approaches wherein measurement, inhibition, or removal of AGEs show the potential to diagnose, manage, and treat bone fragility associated with multiple conditions and diseases.</div></div>\",\"PeriodicalId\":9301,\"journal\":{\"name\":\"Bone\",\"volume\":\"190 \",\"pages\":\"Article 117301\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S8756328224002904\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002904","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
AGEs (Advanced Glycation End-products) in bone come of age
Advanced Glycation End-products (AGEs) are seen in long-lived proteins and were not expected to accumulate in the bone that turnovers and renews itself. Here, we provide a commentary on the contrary, highlighting the Special Issue of AGEs in Bone. An outcome of hyperglycemia and increased oxidative stress, AGEs form and accumulate by altering the bone resorption and formation processes. Accumulation of various AGEs species in bone increases bone fragility through the stiffening of the collagen network and, potentially, through the changes in collagen-mineral interactions. Evidence from both preclinical and clinical studies is leading to new translational approaches wherein measurement, inhibition, or removal of AGEs show the potential to diagnose, manage, and treat bone fragility associated with multiple conditions and diseases.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.