评估肥胖儿童的人体测量指标和部分生化参数的变化与血铅水平的关系。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2024-10-09 DOI:10.3390/metabo14100540
Katarzyna Pozorska, Irena Baranowska-Bosiacka, Dominika Raducha, Patrycja Kupnicka, Mateusz Bosiacki, Beata Bosiacka, Justyna Szmit-Domagalska, Joanna Ratajczak, Anita Horodnicka-Józwa, Mieczysław Walczak, Dariusz Chlubek, Elżbieta Petriczko
{"title":"评估肥胖儿童的人体测量指标和部分生化参数的变化与血铅水平的关系。","authors":"Katarzyna Pozorska, Irena Baranowska-Bosiacka, Dominika Raducha, Patrycja Kupnicka, Mateusz Bosiacki, Beata Bosiacka, Justyna Szmit-Domagalska, Joanna Ratajczak, Anita Horodnicka-Józwa, Mieczysław Walczak, Dariusz Chlubek, Elżbieta Petriczko","doi":"10.3390/metabo14100540","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our paper draws attention to the impact of lead (Pb) on the specificity of obesity development in children exposed to environmental pollution. An advantage of this paper is the homogeneous study group comprising children of identical age from a single geographic region. Moreover, while the influence of environmental toxins on adults has been extensively explored, this study delves into pediatric populations, which have yet to receive comprehensive scrutiny within the scientific literature.</p><p><strong>Methods: </strong>Initially, a group of 136 obese children (the research program lasted three consecutive years: 2016, 2017, and 2018) living in the north-western region of Poland, from whom biochemical tests and auxological data were obtained, were enrolled for analysis. Blood lead levels (BLLs) were determined in 115 children. The age of the children ranged from 7.1 to 10.4 years. The body mass index (BMI) of children averaged 21.5 ± 2.2.</p><p><strong>Results: </strong>The results showed that a large proportion of the participants had BLLs above the threshold for Pb. BLLs ≤ 5 µg/dL (considered safe for children and pregnant women) were found in over 70% of the participants, with BLLs in the range of 5.01-10.00 µg/dL in over 26% of the children, and concentrations > 10 µg/dL (considered toxic threshold for adults) in nearly 2% of the children. The results of our research revealed a positive association between BLLs and average systolic and diastolic blood pressure in the studied children. Moreover, we found a negative correlation between BLLs and absolute fat tissue content and triglyceride concentration. Among the included biochemical factors, only insulin demonstrated a statistically significant relationship with fat mass. This result suggests that early carbohydrate metabolism disorders in overweight children involve decreased peripheral tissue insulin sensitivity.</p><p><strong>Conclusions: </strong>Lead exposure may significantly contribute to the development of hypertension, insulin resistance, and glucose metabolism disorders in overweight and obese children. It is essential to implement multidirectional actions to increase awareness of the harmful effects of xenobiotic exposure, including lead, in order to prevent early-life exposure.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509403/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level.\",\"authors\":\"Katarzyna Pozorska, Irena Baranowska-Bosiacka, Dominika Raducha, Patrycja Kupnicka, Mateusz Bosiacki, Beata Bosiacka, Justyna Szmit-Domagalska, Joanna Ratajczak, Anita Horodnicka-Józwa, Mieczysław Walczak, Dariusz Chlubek, Elżbieta Petriczko\",\"doi\":\"10.3390/metabo14100540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Our paper draws attention to the impact of lead (Pb) on the specificity of obesity development in children exposed to environmental pollution. An advantage of this paper is the homogeneous study group comprising children of identical age from a single geographic region. Moreover, while the influence of environmental toxins on adults has been extensively explored, this study delves into pediatric populations, which have yet to receive comprehensive scrutiny within the scientific literature.</p><p><strong>Methods: </strong>Initially, a group of 136 obese children (the research program lasted three consecutive years: 2016, 2017, and 2018) living in the north-western region of Poland, from whom biochemical tests and auxological data were obtained, were enrolled for analysis. Blood lead levels (BLLs) were determined in 115 children. The age of the children ranged from 7.1 to 10.4 years. The body mass index (BMI) of children averaged 21.5 ± 2.2.</p><p><strong>Results: </strong>The results showed that a large proportion of the participants had BLLs above the threshold for Pb. BLLs ≤ 5 µg/dL (considered safe for children and pregnant women) were found in over 70% of the participants, with BLLs in the range of 5.01-10.00 µg/dL in over 26% of the children, and concentrations > 10 µg/dL (considered toxic threshold for adults) in nearly 2% of the children. The results of our research revealed a positive association between BLLs and average systolic and diastolic blood pressure in the studied children. Moreover, we found a negative correlation between BLLs and absolute fat tissue content and triglyceride concentration. Among the included biochemical factors, only insulin demonstrated a statistically significant relationship with fat mass. This result suggests that early carbohydrate metabolism disorders in overweight children involve decreased peripheral tissue insulin sensitivity.</p><p><strong>Conclusions: </strong>Lead exposure may significantly contribute to the development of hypertension, insulin resistance, and glucose metabolism disorders in overweight and obese children. It is essential to implement multidirectional actions to increase awareness of the harmful effects of xenobiotic exposure, including lead, in order to prevent early-life exposure.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14100540\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14100540","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们的论文提请人们注意铅(Pb)对暴露于环境污染的儿童肥胖发展特异性的影响。本文的一个优点是研究小组由来自单一地理区域的同龄儿童组成。此外,尽管环境毒素对成人的影响已被广泛探讨,但本研究却深入研究了儿科人群,而儿科人群尚未在科学文献中得到全面审查:最初,研究人员选取了居住在波兰西北部地区的 136 名肥胖儿童(研究项目连续进行了三年:2016 年、2017 年和 2018 年)进行分析。共测定了 115 名儿童的血铅含量(BLLs)。这些儿童的年龄从 7.1 岁到 10.4 岁不等。儿童的体重指数(BMI)平均为 21.5 ± 2.2:结果显示,很大一部分参与者的铅含量超过了铅的临界值。超过 70% 的参与者的 BLL 值低于 5 µg/dL(儿童和孕妇的安全值),超过 26% 的儿童的 BLL 值介于 5.01-10.00 µg/dL 之间,近 2% 的儿童的 BLL 值高于 10 µg/dL(成人的毒性阈值)。我们的研究结果表明,在所研究的儿童中,BLL 与平均收缩压和舒张压之间存在正相关。此外,我们还发现 BLLs 与脂肪组织绝对含量和甘油三酯浓度呈负相关。在所包括的生化因素中,只有胰岛素与脂肪量有显著的统计学关系。这一结果表明,超重儿童早期碳水化合物代谢紊乱与外周组织胰岛素敏感性降低有关:结论:铅暴露可能是导致超重和肥胖儿童出现高血压、胰岛素抵抗和糖代谢紊乱的重要原因。有必要采取多方位的行动,提高人们对包括铅在内的异生物暴露的有害影响的认识,以防止在生命早期暴露于铅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level.

Background: Our paper draws attention to the impact of lead (Pb) on the specificity of obesity development in children exposed to environmental pollution. An advantage of this paper is the homogeneous study group comprising children of identical age from a single geographic region. Moreover, while the influence of environmental toxins on adults has been extensively explored, this study delves into pediatric populations, which have yet to receive comprehensive scrutiny within the scientific literature.

Methods: Initially, a group of 136 obese children (the research program lasted three consecutive years: 2016, 2017, and 2018) living in the north-western region of Poland, from whom biochemical tests and auxological data were obtained, were enrolled for analysis. Blood lead levels (BLLs) were determined in 115 children. The age of the children ranged from 7.1 to 10.4 years. The body mass index (BMI) of children averaged 21.5 ± 2.2.

Results: The results showed that a large proportion of the participants had BLLs above the threshold for Pb. BLLs ≤ 5 µg/dL (considered safe for children and pregnant women) were found in over 70% of the participants, with BLLs in the range of 5.01-10.00 µg/dL in over 26% of the children, and concentrations > 10 µg/dL (considered toxic threshold for adults) in nearly 2% of the children. The results of our research revealed a positive association between BLLs and average systolic and diastolic blood pressure in the studied children. Moreover, we found a negative correlation between BLLs and absolute fat tissue content and triglyceride concentration. Among the included biochemical factors, only insulin demonstrated a statistically significant relationship with fat mass. This result suggests that early carbohydrate metabolism disorders in overweight children involve decreased peripheral tissue insulin sensitivity.

Conclusions: Lead exposure may significantly contribute to the development of hypertension, insulin resistance, and glucose metabolism disorders in overweight and obese children. It is essential to implement multidirectional actions to increase awareness of the harmful effects of xenobiotic exposure, including lead, in order to prevent early-life exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信