不同年龄组皮层下结构体积估算软件间的一致性

IF 3.5 2区 医学 Q1 NEUROIMAGING
Lei Zhang, Yang Hu
{"title":"不同年龄组皮层下结构体积估算软件间的一致性","authors":"Lei Zhang,&nbsp;Yang Hu","doi":"10.1002/hbm.70055","DOIUrl":null,"url":null,"abstract":"<p>There is still little research on the consistency among the subcortical volume estimates of different software packages. It is also unclear whether there are age-related differences in the inter-software consistency. The current study aimed to examine the consistency of three commonly used automated software packages and the effect of age on inter-software consistency. We analyzed T1-weighted structural images from two public datasets, in which the subjects were divided into four age groups ranging from childhood and adolescence to late adulthood. We chose three mainstream automated software packages including FreeSurfer, CAT, and FSL, to estimate the volumes of seven subcortical structures, including thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. We used the intraclass correlation coefficient (ICC) and Pearson correlation coefficient (PCC) to quantify inter-software consistency and compared the consistency measures among the age groups. As a measure of validity, we additionally evaluated the predictive power of each software package's estimates for predicting age. The results showed good inter-software consistency in the thalamus, caudate, putamen, and hippocampus, moderate consistency in the pallidum, and poor consistency in the amygdala and accumbens. Significant differences in the inter-software consistency were not observed among the age groups in most cases. FreeSurfer exhibited higher age prediction accuracy than CAT and FSL. The current study showed that the inter-software consistency on the subcortical volume estimation varies with structures but generally not with age groups, which has important implications for the interpretation and reproducibility of neuroimaging findings.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 15","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inter-Software Consistency on the Estimation of Subcortical Structure Volume in Different Age Groups\",\"authors\":\"Lei Zhang,&nbsp;Yang Hu\",\"doi\":\"10.1002/hbm.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is still little research on the consistency among the subcortical volume estimates of different software packages. It is also unclear whether there are age-related differences in the inter-software consistency. The current study aimed to examine the consistency of three commonly used automated software packages and the effect of age on inter-software consistency. We analyzed T1-weighted structural images from two public datasets, in which the subjects were divided into four age groups ranging from childhood and adolescence to late adulthood. We chose three mainstream automated software packages including FreeSurfer, CAT, and FSL, to estimate the volumes of seven subcortical structures, including thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. We used the intraclass correlation coefficient (ICC) and Pearson correlation coefficient (PCC) to quantify inter-software consistency and compared the consistency measures among the age groups. As a measure of validity, we additionally evaluated the predictive power of each software package's estimates for predicting age. The results showed good inter-software consistency in the thalamus, caudate, putamen, and hippocampus, moderate consistency in the pallidum, and poor consistency in the amygdala and accumbens. Significant differences in the inter-software consistency were not observed among the age groups in most cases. FreeSurfer exhibited higher age prediction accuracy than CAT and FSL. The current study showed that the inter-software consistency on the subcortical volume estimation varies with structures but generally not with age groups, which has important implications for the interpretation and reproducibility of neuroimaging findings.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 15\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70055\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70055","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

关于不同软件包皮层下体积估计值之间一致性的研究仍然很少。软件间的一致性是否存在与年龄相关的差异也尚不清楚。本研究旨在考察三种常用自动软件包的一致性以及年龄对软件间一致性的影响。我们分析了两个公共数据集中的 T1 加权结构图像,其中受试者被分为四个年龄组,从儿童、青少年到成年晚期。我们选择了 FreeSurfer、CAT 和 FSL 这三款主流的自动软件来估算丘脑、尾状核、普特门、苍白球、海马、杏仁核和延脑等七个皮层下结构的体积。我们使用类内相关系数(ICC)和皮尔逊相关系数(PCC)来量化软件间的一致性,并比较了不同年龄组之间的一致性。作为有效性的衡量标准,我们还评估了每个软件包的估计值对预测年龄的预测能力。结果显示,丘脑、尾状核、丘脑和海马的软件间一致性较好,苍白球的一致性中等,而杏仁核和延脑的一致性较差。在大多数情况下,不同年龄组的软件间一致性没有明显差异。FreeSurfer 的年龄预测准确率高于 CAT 和 FSL。本研究表明,皮层下容积估算的软件间一致性因结构而异,但一般不因年龄组而异,这对神经成像结果的解释和可重复性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inter-Software Consistency on the Estimation of Subcortical Structure Volume in Different Age Groups

Inter-Software Consistency on the Estimation of Subcortical Structure Volume in Different Age Groups

There is still little research on the consistency among the subcortical volume estimates of different software packages. It is also unclear whether there are age-related differences in the inter-software consistency. The current study aimed to examine the consistency of three commonly used automated software packages and the effect of age on inter-software consistency. We analyzed T1-weighted structural images from two public datasets, in which the subjects were divided into four age groups ranging from childhood and adolescence to late adulthood. We chose three mainstream automated software packages including FreeSurfer, CAT, and FSL, to estimate the volumes of seven subcortical structures, including thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. We used the intraclass correlation coefficient (ICC) and Pearson correlation coefficient (PCC) to quantify inter-software consistency and compared the consistency measures among the age groups. As a measure of validity, we additionally evaluated the predictive power of each software package's estimates for predicting age. The results showed good inter-software consistency in the thalamus, caudate, putamen, and hippocampus, moderate consistency in the pallidum, and poor consistency in the amygdala and accumbens. Significant differences in the inter-software consistency were not observed among the age groups in most cases. FreeSurfer exhibited higher age prediction accuracy than CAT and FSL. The current study showed that the inter-software consistency on the subcortical volume estimation varies with structures but generally not with age groups, which has important implications for the interpretation and reproducibility of neuroimaging findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信