多层 BiFeO3-BaTiO3-NaTaO3 弛豫铁电陶瓷中的超高能量存储

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Rhys Montecillo, R. R. Chien, Cheng-Sao Chen, Po-Hsien Wu, Chi-Shun Tu and Kuei-Chih Feng
{"title":"多层 BiFeO3-BaTiO3-NaTaO3 弛豫铁电陶瓷中的超高能量存储","authors":"Rhys Montecillo, R. R. Chien, Cheng-Sao Chen, Po-Hsien Wu, Chi-Shun Tu and Kuei-Chih Feng","doi":"10.1039/D4TA04324C","DOIUrl":null,"url":null,"abstract":"<p >The rising challenge of high-density electric energy storage has accelerated the research of electric energy-storage capacitors due to their high power density and voltage resistance, excellent temperature stability, and environmental friendliness. However, lead-free ferroelectric capacitors generally have a low discharge energy density. This study used a multilayer ceramic capacitor (MLCC) design with active ceramic layers of relaxor ferroelectric NaTaO<small><sub>3</sub></small>-modified BiFeO<small><sub>3</sub></small>–BaTiO<small><sub>3</sub></small> co-sintered with 90Ag/10Pd interlayer electrodes. Superb recoverable energy densities of <em>W</em><small><sub>rec</sub></small> ∼2.8 J cm<small><sup>−3</sup></small> with an energy efficiency of <em>η</em> ∼73% at 400 kV cm<small><sup>−1</sup></small> and <em>W</em><small><sub>rec</sub></small> ∼4.5 J cm<small><sup>−3</sup></small> with an energy efficiency of <em>η</em> ∼77% at 450 kV cm<small><sup>−1</sup></small> were attained, respectively, in 9-active-ceramic-layer and 24-active-ceramic-layer MLCCs. Excellent thermal stability and fatigue resistance of energy storage capability were achieved up to 180 °C and exceeding 1 × 10<small><sup>4</sup></small> cycles. The ultrahigh energy-storage properties can be linked to the synergistic effects of multiple local lattice distortions, nanoscale structures, and interfacial <em>E</em> fields at grain boundaries. This report demonstrates an efficient scheme to utilize ternary BiFeO<small><sub>3</sub></small>–BaTiO<small><sub>3</sub></small>-based ceramics <em>via</em> the MLCC technology for ultrahigh-energy-density electrostatic energy storage.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 44","pages":" 30642-30654"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh energy storage in multilayer BiFeO3–BaTiO3–NaTaO3 relaxor ferroelectric ceramics†\",\"authors\":\"Rhys Montecillo, R. R. Chien, Cheng-Sao Chen, Po-Hsien Wu, Chi-Shun Tu and Kuei-Chih Feng\",\"doi\":\"10.1039/D4TA04324C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rising challenge of high-density electric energy storage has accelerated the research of electric energy-storage capacitors due to their high power density and voltage resistance, excellent temperature stability, and environmental friendliness. However, lead-free ferroelectric capacitors generally have a low discharge energy density. This study used a multilayer ceramic capacitor (MLCC) design with active ceramic layers of relaxor ferroelectric NaTaO<small><sub>3</sub></small>-modified BiFeO<small><sub>3</sub></small>–BaTiO<small><sub>3</sub></small> co-sintered with 90Ag/10Pd interlayer electrodes. Superb recoverable energy densities of <em>W</em><small><sub>rec</sub></small> ∼2.8 J cm<small><sup>−3</sup></small> with an energy efficiency of <em>η</em> ∼73% at 400 kV cm<small><sup>−1</sup></small> and <em>W</em><small><sub>rec</sub></small> ∼4.5 J cm<small><sup>−3</sup></small> with an energy efficiency of <em>η</em> ∼77% at 450 kV cm<small><sup>−1</sup></small> were attained, respectively, in 9-active-ceramic-layer and 24-active-ceramic-layer MLCCs. Excellent thermal stability and fatigue resistance of energy storage capability were achieved up to 180 °C and exceeding 1 × 10<small><sup>4</sup></small> cycles. The ultrahigh energy-storage properties can be linked to the synergistic effects of multiple local lattice distortions, nanoscale structures, and interfacial <em>E</em> fields at grain boundaries. This report demonstrates an efficient scheme to utilize ternary BiFeO<small><sub>3</sub></small>–BaTiO<small><sub>3</sub></small>-based ceramics <em>via</em> the MLCC technology for ultrahigh-energy-density electrostatic energy storage.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 44\",\"pages\":\" 30642-30654\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04324c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04324c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着高密度电能存储的挑战日益严峻,电能存储电容器因其功率密度高、耐电压性强、温度稳定性好和环境友好等优点,加速了对其的研究。然而,无铅铁电电容器的放电能量密度普遍较低。本研究采用多层陶瓷电容器 (MLCC) 设计,其活性陶瓷层为弛豫铁电 NaTaO3 改性 BiFeO3-BaTiO3 与 90Ag/10Pd 层间电极共烧结。在 9 层活性陶瓷层和 24 层活性陶瓷层的 MLCC 中,400 kV cm-1 时的可回收能量密度分别为 Wrec ∼ 2.8 J cm-3,能量效率为 η ∼ 73%;450 kV cm-1 时的可回收能量密度分别为 Wrec ∼ 4.5 J cm-3,能量效率为 η ∼ 77%。储能能力的热稳定性和抗疲劳性极佳,温度高达 180 °C,循环次数超过 1 × 104 次。超高的储能特性可能与晶界处的多种局部晶格畸变、纳米级结构和界面电场的协同效应有关。本报告展示了通过 MLCC 技术利用三元 BiFeO3-BaTiO3 基陶瓷进行超高能量密度静电储能的有效方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh energy storage in multilayer BiFeO3–BaTiO3–NaTaO3 relaxor ferroelectric ceramics†

Ultrahigh energy storage in multilayer BiFeO3–BaTiO3–NaTaO3 relaxor ferroelectric ceramics†

Ultrahigh energy storage in multilayer BiFeO3–BaTiO3–NaTaO3 relaxor ferroelectric ceramics†

The rising challenge of high-density electric energy storage has accelerated the research of electric energy-storage capacitors due to their high power density and voltage resistance, excellent temperature stability, and environmental friendliness. However, lead-free ferroelectric capacitors generally have a low discharge energy density. This study used a multilayer ceramic capacitor (MLCC) design with active ceramic layers of relaxor ferroelectric NaTaO3-modified BiFeO3–BaTiO3 co-sintered with 90Ag/10Pd interlayer electrodes. Superb recoverable energy densities of Wrec ∼2.8 J cm−3 with an energy efficiency of η ∼73% at 400 kV cm−1 and Wrec ∼4.5 J cm−3 with an energy efficiency of η ∼77% at 450 kV cm−1 were attained, respectively, in 9-active-ceramic-layer and 24-active-ceramic-layer MLCCs. Excellent thermal stability and fatigue resistance of energy storage capability were achieved up to 180 °C and exceeding 1 × 104 cycles. The ultrahigh energy-storage properties can be linked to the synergistic effects of multiple local lattice distortions, nanoscale structures, and interfacial E fields at grain boundaries. This report demonstrates an efficient scheme to utilize ternary BiFeO3–BaTiO3-based ceramics via the MLCC technology for ultrahigh-energy-density electrostatic energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信