激光辅助合成和改性二维材料。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yejun Lee, Sunhwa Hong, Issac Moon, Chan-Jin Kim, Yunseok Lee, Byung Hee Hong
{"title":"激光辅助合成和改性二维材料。","authors":"Yejun Lee, Sunhwa Hong, Issac Moon, Chan-Jin Kim, Yunseok Lee, Byung Hee Hong","doi":"10.1088/1361-6528/ad892a","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) materials with unique physical, electronic, and optical properties have been intensively studied to be utilized for the next-generation electronic and optical devices, and the use of laser energy in the synthesis and modification of 2D materials is advantageous due to its convenient and fast fabrication processes as well as selective, controllable, and cost-effective characteristics allowing the precise control in materials properties. This paper summarizes the recent progress in utilizations of laser technology in synthesizing, doping, etching, transfer and strain engineering of 2D materials, which is expected to provide an insight for the future applications across diverse research areas.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-assisted synthesis and modification of 2D materials.\",\"authors\":\"Yejun Lee, Sunhwa Hong, Issac Moon, Chan-Jin Kim, Yunseok Lee, Byung Hee Hong\",\"doi\":\"10.1088/1361-6528/ad892a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) materials with unique physical, electronic, and optical properties have been intensively studied to be utilized for the next-generation electronic and optical devices, and the use of laser energy in the synthesis and modification of 2D materials is advantageous due to its convenient and fast fabrication processes as well as selective, controllable, and cost-effective characteristics allowing the precise control in materials properties. This paper summarizes the recent progress in utilizations of laser technology in synthesizing, doping, etching, transfer and strain engineering of 2D materials, which is expected to provide an insight for the future applications across diverse research areas.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad892a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad892a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有独特物理、电子和光学特性的二维材料已被深入研究,以用于下一代电子和光学设备,而利用激光能量合成和改性二维材料因其方便快捷的制造工艺以及选择性、可控性和成本效益高的特点而具有优势,可实现对材料特性的精确控制。本文总结了利用激光技术合成、掺杂、蚀刻、转移和应变工程二维材料的最新进展,希望能为未来在不同研究领域的应用提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-assisted synthesis and modification of 2D materials.

Two-dimensional (2D) materials with unique physical, electronic, and optical properties have been intensively studied to be utilized for the next-generation electronic and optical devices, and the use of laser energy in the synthesis and modification of 2D materials is advantageous due to its convenient and fast fabrication processes as well as selective, controllable, and cost-effective characteristics allowing the precise control in materials properties. This paper summarizes the recent progress in utilizations of laser technology in synthesizing, doping, etching, transfer and strain engineering of 2D materials, which is expected to provide an insight for the future applications across diverse research areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信