Silvana Porco, Shi Yu, Tong Liang, Christophe Snoeck, Christian Hermans, Steve A Kay
{"title":"与时钟相关的 LUX ARRHYTHMO 调节拟南芥根部的高亲和性硝酸盐转运。","authors":"Silvana Porco, Shi Yu, Tong Liang, Christophe Snoeck, Christian Hermans, Steve A Kay","doi":"10.1111/tpj.17080","DOIUrl":null,"url":null,"abstract":"<p><p>The circadian clock organizes physiological processes in plants to occur at specific times of the day, optimizing efficient use of resources. Nitrate is a crucial inorganic nitrogen source for agricultural systems to sustain crop productivity. However, because nitrate fertilization has a negative impact on the environment, it is important to carefully manage nitrate levels. Understanding crop biological rhythms can lead to more ecologically friendly agricultural practices. Gating responses through the circadian clock could be a strategy to enhance root nitrate uptake and to limit nitrate runoff. In Arabidopsis, the NITRATE TRANSPORTER 2.1 (NRT2.1) gene encodes a key component of the high-affinity nitrate transporter system. Our study reveals that NRT2.1 exhibits a rhythmic expression pattern, with daytime increases and nighttime decreases. The NRT2.1 promoter activity remains rhythmic under constant light, indicating a circadian regulation. The clock-associated transcription factor LUX ARRHYTHMO (LUX) binds to the NRT2.1 promoter in vivo. Loss-of-function of LUX leads to increased NRT2.1 transcript levels and root nitrate uptake at dusk. This supports LUX acting as a transcriptional repressor and modulating NRT2.1 expression in a time-dependent manner. Furthermore, applying nitrate at different times of the day results in varying magnitudes of the transcriptional response in nitrate-regulated genes. We also demonstrate that a defect in the high-affinity nitrate transport system feeds back to the central oscillator by modifying the LUX promoter activity. In conclusion, this study uncovers a molecular pathway connecting the root nitrate uptake and circadian clock, with potential agro-chronobiological applications.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The clock-associated LUX ARRHYTHMO regulates high-affinity nitrate transport in Arabidopsis roots.\",\"authors\":\"Silvana Porco, Shi Yu, Tong Liang, Christophe Snoeck, Christian Hermans, Steve A Kay\",\"doi\":\"10.1111/tpj.17080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The circadian clock organizes physiological processes in plants to occur at specific times of the day, optimizing efficient use of resources. Nitrate is a crucial inorganic nitrogen source for agricultural systems to sustain crop productivity. However, because nitrate fertilization has a negative impact on the environment, it is important to carefully manage nitrate levels. Understanding crop biological rhythms can lead to more ecologically friendly agricultural practices. Gating responses through the circadian clock could be a strategy to enhance root nitrate uptake and to limit nitrate runoff. In Arabidopsis, the NITRATE TRANSPORTER 2.1 (NRT2.1) gene encodes a key component of the high-affinity nitrate transporter system. Our study reveals that NRT2.1 exhibits a rhythmic expression pattern, with daytime increases and nighttime decreases. The NRT2.1 promoter activity remains rhythmic under constant light, indicating a circadian regulation. The clock-associated transcription factor LUX ARRHYTHMO (LUX) binds to the NRT2.1 promoter in vivo. Loss-of-function of LUX leads to increased NRT2.1 transcript levels and root nitrate uptake at dusk. This supports LUX acting as a transcriptional repressor and modulating NRT2.1 expression in a time-dependent manner. Furthermore, applying nitrate at different times of the day results in varying magnitudes of the transcriptional response in nitrate-regulated genes. We also demonstrate that a defect in the high-affinity nitrate transport system feeds back to the central oscillator by modifying the LUX promoter activity. In conclusion, this study uncovers a molecular pathway connecting the root nitrate uptake and circadian clock, with potential agro-chronobiological applications.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17080\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17080","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The clock-associated LUX ARRHYTHMO regulates high-affinity nitrate transport in Arabidopsis roots.
The circadian clock organizes physiological processes in plants to occur at specific times of the day, optimizing efficient use of resources. Nitrate is a crucial inorganic nitrogen source for agricultural systems to sustain crop productivity. However, because nitrate fertilization has a negative impact on the environment, it is important to carefully manage nitrate levels. Understanding crop biological rhythms can lead to more ecologically friendly agricultural practices. Gating responses through the circadian clock could be a strategy to enhance root nitrate uptake and to limit nitrate runoff. In Arabidopsis, the NITRATE TRANSPORTER 2.1 (NRT2.1) gene encodes a key component of the high-affinity nitrate transporter system. Our study reveals that NRT2.1 exhibits a rhythmic expression pattern, with daytime increases and nighttime decreases. The NRT2.1 promoter activity remains rhythmic under constant light, indicating a circadian regulation. The clock-associated transcription factor LUX ARRHYTHMO (LUX) binds to the NRT2.1 promoter in vivo. Loss-of-function of LUX leads to increased NRT2.1 transcript levels and root nitrate uptake at dusk. This supports LUX acting as a transcriptional repressor and modulating NRT2.1 expression in a time-dependent manner. Furthermore, applying nitrate at different times of the day results in varying magnitudes of the transcriptional response in nitrate-regulated genes. We also demonstrate that a defect in the high-affinity nitrate transport system feeds back to the central oscillator by modifying the LUX promoter activity. In conclusion, this study uncovers a molecular pathway connecting the root nitrate uptake and circadian clock, with potential agro-chronobiological applications.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.