Wenrui Zhang, Dan Wang, Zhonghuan Yin, Lu Tang, Xiaoyang Pan, Changhong Guo
{"title":"RNA 测序和功能分析发现了在小麦配子作用过程中参与调控花粉育性的关键长非编码 RNA。","authors":"Wenrui Zhang, Dan Wang, Zhonghuan Yin, Lu Tang, Xiaoyang Pan, Changhong Guo","doi":"10.1111/tpj.17082","DOIUrl":null,"url":null,"abstract":"<p><p>Gametocidal (Gc) chromosomes have been widely utilized in genetic breeding due to their ability to induce chromosomal breakage and eliminate gametes that lack them. Long noncoding RNAs (lncRNAs) have various functional mechanisms in regulating pollen and anther development; however, their regulatory contributions to Gc action are still unknown. Here, we identified 2824 differentially expressed lncRNAs (DE-lncRNAs) from the anther tissues of Triticum aestivum cv. Chinese Spring (CS) and Chinese Spring-Gc 3C chromosome monosomic addition line (CS-3C) through sequencing. In this study, we predicted 161 target mRNAs for 145 DE-lncRNAs, including 104 cis-regulatory, 60 trans-regulatory, and three both cis-regulatory and trans-regulatory manner. Combined with our previous miRNA sequencing data, 241 DE-lncRNAs functioned as potential endogenous target mimics (eTMs) for 84 differentially expressed microRNAs (DE-miRNAs, including 12 novel miRNAs). The results of transient transformation in tobacco leaves indicated that L006278 could bind to MTCONS_00006277, which encoded a calcineurin CBL-interacting protein kinase 19-like, and suppress its expression. Furthermore, L117735 could function as an eTM for tae-miR9657b-3p, and L056972 could function as an eTM for gc-m2240-5p. To explore the function of lncRNAs in the process of Gc action, we transformed L006278, an up-regulated lncRNA in CS-3C, into rice to analyze its effect on pollen fertility. Overexpression of L006278 led to a reduction in rice pollen fertility. Overall, our findings indicate that lncRNAs can contribute to the regulation of pollen fertility during the process of Gc action by regulating the expression levels of target mRNAs and acting as eTMs for certain key miRNAs.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA sequencing and functional analysis uncover key long non-coding RNAs involved in regulating pollen fertility during the process of gametocidal action in wheat.\",\"authors\":\"Wenrui Zhang, Dan Wang, Zhonghuan Yin, Lu Tang, Xiaoyang Pan, Changhong Guo\",\"doi\":\"10.1111/tpj.17082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gametocidal (Gc) chromosomes have been widely utilized in genetic breeding due to their ability to induce chromosomal breakage and eliminate gametes that lack them. Long noncoding RNAs (lncRNAs) have various functional mechanisms in regulating pollen and anther development; however, their regulatory contributions to Gc action are still unknown. Here, we identified 2824 differentially expressed lncRNAs (DE-lncRNAs) from the anther tissues of Triticum aestivum cv. Chinese Spring (CS) and Chinese Spring-Gc 3C chromosome monosomic addition line (CS-3C) through sequencing. In this study, we predicted 161 target mRNAs for 145 DE-lncRNAs, including 104 cis-regulatory, 60 trans-regulatory, and three both cis-regulatory and trans-regulatory manner. Combined with our previous miRNA sequencing data, 241 DE-lncRNAs functioned as potential endogenous target mimics (eTMs) for 84 differentially expressed microRNAs (DE-miRNAs, including 12 novel miRNAs). The results of transient transformation in tobacco leaves indicated that L006278 could bind to MTCONS_00006277, which encoded a calcineurin CBL-interacting protein kinase 19-like, and suppress its expression. Furthermore, L117735 could function as an eTM for tae-miR9657b-3p, and L056972 could function as an eTM for gc-m2240-5p. To explore the function of lncRNAs in the process of Gc action, we transformed L006278, an up-regulated lncRNA in CS-3C, into rice to analyze its effect on pollen fertility. Overexpression of L006278 led to a reduction in rice pollen fertility. Overall, our findings indicate that lncRNAs can contribute to the regulation of pollen fertility during the process of Gc action by regulating the expression levels of target mRNAs and acting as eTMs for certain key miRNAs.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17082\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17082","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
RNA sequencing and functional analysis uncover key long non-coding RNAs involved in regulating pollen fertility during the process of gametocidal action in wheat.
Gametocidal (Gc) chromosomes have been widely utilized in genetic breeding due to their ability to induce chromosomal breakage and eliminate gametes that lack them. Long noncoding RNAs (lncRNAs) have various functional mechanisms in regulating pollen and anther development; however, their regulatory contributions to Gc action are still unknown. Here, we identified 2824 differentially expressed lncRNAs (DE-lncRNAs) from the anther tissues of Triticum aestivum cv. Chinese Spring (CS) and Chinese Spring-Gc 3C chromosome monosomic addition line (CS-3C) through sequencing. In this study, we predicted 161 target mRNAs for 145 DE-lncRNAs, including 104 cis-regulatory, 60 trans-regulatory, and three both cis-regulatory and trans-regulatory manner. Combined with our previous miRNA sequencing data, 241 DE-lncRNAs functioned as potential endogenous target mimics (eTMs) for 84 differentially expressed microRNAs (DE-miRNAs, including 12 novel miRNAs). The results of transient transformation in tobacco leaves indicated that L006278 could bind to MTCONS_00006277, which encoded a calcineurin CBL-interacting protein kinase 19-like, and suppress its expression. Furthermore, L117735 could function as an eTM for tae-miR9657b-3p, and L056972 could function as an eTM for gc-m2240-5p. To explore the function of lncRNAs in the process of Gc action, we transformed L006278, an up-regulated lncRNA in CS-3C, into rice to analyze its effect on pollen fertility. Overexpression of L006278 led to a reduction in rice pollen fertility. Overall, our findings indicate that lncRNAs can contribute to the regulation of pollen fertility during the process of Gc action by regulating the expression levels of target mRNAs and acting as eTMs for certain key miRNAs.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.