室温下极化子的相干光自旋霍尔传输

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ying Shi, Yusong Gan, Yuzhong Chen, Yubin Wang, Sanjib Ghosh, Alexey Kavokin, Qihua Xiong
{"title":"室温下极化子的相干光自旋霍尔传输","authors":"Ying Shi, Yusong Gan, Yuzhong Chen, Yubin Wang, Sanjib Ghosh, Alexey Kavokin, Qihua Xiong","doi":"10.1038/s41563-024-02028-2","DOIUrl":null,"url":null,"abstract":"<p>Spin or valley degrees of freedom hold promise for next-generation spintronics. Nonetheless, the macroscopic coherent spin current formations are still hindered by rapid dephasing due to electron scattering, specifically at room temperature. Exciton polaritons offer excellent platforms for spin-optronic devices via the optical spin Hall effect. However, this effect could neither be unequivocally observed at room temperature nor be exploited for practical spintronic devices due to the presence of strong thermal fluctuations or large linear spin splitting. Here we report the observation of room-temperature optical spin Hall effect of exciton polaritons, with the spin current flow over 60 μm in a formamidinium lead bromide perovskite microcavity. We provide direct evidence of long-range coherence in the flow of polaritons and the spin current carried by them. Leveraging the spin Hall transport of polaritons, we further demonstrate two polaritonic devices, namely, a NOT gate and a spin-polarized beamsplitter, advancing the frontier of room-temperature polaritonics in perovskite microcavities.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"75 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent optical spin Hall transport for polaritonics at room temperature\",\"authors\":\"Ying Shi, Yusong Gan, Yuzhong Chen, Yubin Wang, Sanjib Ghosh, Alexey Kavokin, Qihua Xiong\",\"doi\":\"10.1038/s41563-024-02028-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spin or valley degrees of freedom hold promise for next-generation spintronics. Nonetheless, the macroscopic coherent spin current formations are still hindered by rapid dephasing due to electron scattering, specifically at room temperature. Exciton polaritons offer excellent platforms for spin-optronic devices via the optical spin Hall effect. However, this effect could neither be unequivocally observed at room temperature nor be exploited for practical spintronic devices due to the presence of strong thermal fluctuations or large linear spin splitting. Here we report the observation of room-temperature optical spin Hall effect of exciton polaritons, with the spin current flow over 60 μm in a formamidinium lead bromide perovskite microcavity. We provide direct evidence of long-range coherence in the flow of polaritons and the spin current carried by them. Leveraging the spin Hall transport of polaritons, we further demonstrate two polaritonic devices, namely, a NOT gate and a spin-polarized beamsplitter, advancing the frontier of room-temperature polaritonics in perovskite microcavities.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-024-02028-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02028-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自旋或山谷自由度为下一代自旋电子学带来了希望。然而,宏观相干自旋电流的形成仍然受到电子散射导致的快速衰减的阻碍,尤其是在室温下。激子极化子通过光学自旋霍尔效应为自旋光电器件提供了绝佳的平台。然而,由于存在强烈的热波动或较大的线性自旋分裂,这种效应既不能在室温下明确观测到,也不能用于实际的自旋电子器件。在这里,我们报告了对激子极化子的室温光学自旋霍尔效应的观测结果,自旋电流在 60 μm 以上的甲脒溴化铅过磷酸盐微腔中流动。我们直接证明了极化子及其携带的自旋电流在流动过程中的长程相干性。利用极化子的自旋霍尔传输,我们进一步展示了两个极化子器件,即一个 NOT 栅极和一个自旋极化分光器,从而推进了包晶微腔中室温极化子学的前沿研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coherent optical spin Hall transport for polaritonics at room temperature

Coherent optical spin Hall transport for polaritonics at room temperature

Spin or valley degrees of freedom hold promise for next-generation spintronics. Nonetheless, the macroscopic coherent spin current formations are still hindered by rapid dephasing due to electron scattering, specifically at room temperature. Exciton polaritons offer excellent platforms for spin-optronic devices via the optical spin Hall effect. However, this effect could neither be unequivocally observed at room temperature nor be exploited for practical spintronic devices due to the presence of strong thermal fluctuations or large linear spin splitting. Here we report the observation of room-temperature optical spin Hall effect of exciton polaritons, with the spin current flow over 60 μm in a formamidinium lead bromide perovskite microcavity. We provide direct evidence of long-range coherence in the flow of polaritons and the spin current carried by them. Leveraging the spin Hall transport of polaritons, we further demonstrate two polaritonic devices, namely, a NOT gate and a spin-polarized beamsplitter, advancing the frontier of room-temperature polaritonics in perovskite microcavities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信