Mengting Huang , Yuan Ma , Shunli Che, Longteng Shen, Zhicheng Wan, Shiping Su, Shuquan Ding, Xilei Li
{"title":"纳米多苯乙烯和辛硫磷污染:中华绒螯蟹肝胰腺毒性的威胁","authors":"Mengting Huang , Yuan Ma , Shunli Che, Longteng Shen, Zhicheng Wan, Shiping Su, Shuquan Ding, Xilei Li","doi":"10.1016/j.aquatox.2024.107124","DOIUrl":null,"url":null,"abstract":"<div><div>Significant concerns have been raised by the widespread pollutants phoxim (PHO) and nanopolystyrene (NP) in the natural environment. This study evaluated the toxicity effects on the hepatopancreas of <em>Eriocheir sinensis</em> caused by NP and/or PHO at concentrations found in the environment. Subchronic exposure to NP and/or PHO triggered hepatopancreas histological damage within a 21-day exposure period. The NP, PHO, and co-exposure (NPO) groups exhibited fewer blister-like (B) cells, along with the appearance of vacuolation. Furthermore, these exposures induced impairment in the hepatic tubule mucus barrier and mechanical barrier, as evidenced by altered expression of oxidative stress-related genes, mucin-related genes, and TJ-related genes. Additionally, alterations in immunity-related genes and inflammatory cytokine genes expression were observed. The findings showed that hepatopancreas inflammation was caused by both individual and combined exposure to NP and PHO and that the inflammatory response was exacerbated by the co-exposure. The possible pathways of hepatopancreas toxicity were further investigated by transcriptomic analysis. Hepatopancreas inflammation was brought on by subchronic exposure to PHO and co-exposure; this inflammation was exacerbated by co-exposure and was backed by the activation of NF-κB signaling pathway via targeting-related genes. In summary, this research represents the initial documentation, to the best of our understanding of the detrimental effects of exposured to NP and/or PHO at levels found in the environment disrupt the hepatopancreas mucus and mechanical barrier in crustaceans, triggering inflammatory responses. These findings highlight the significance of NP and/or PHO pollution for hepatopancreas health.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"276 ","pages":"Article 107124"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanopolystyrene and phoxim pollution: A threat to hepatopancreas toxicity in Chinese mitten crab (Eriocheir sinensis)\",\"authors\":\"Mengting Huang , Yuan Ma , Shunli Che, Longteng Shen, Zhicheng Wan, Shiping Su, Shuquan Ding, Xilei Li\",\"doi\":\"10.1016/j.aquatox.2024.107124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Significant concerns have been raised by the widespread pollutants phoxim (PHO) and nanopolystyrene (NP) in the natural environment. This study evaluated the toxicity effects on the hepatopancreas of <em>Eriocheir sinensis</em> caused by NP and/or PHO at concentrations found in the environment. Subchronic exposure to NP and/or PHO triggered hepatopancreas histological damage within a 21-day exposure period. The NP, PHO, and co-exposure (NPO) groups exhibited fewer blister-like (B) cells, along with the appearance of vacuolation. Furthermore, these exposures induced impairment in the hepatic tubule mucus barrier and mechanical barrier, as evidenced by altered expression of oxidative stress-related genes, mucin-related genes, and TJ-related genes. Additionally, alterations in immunity-related genes and inflammatory cytokine genes expression were observed. The findings showed that hepatopancreas inflammation was caused by both individual and combined exposure to NP and PHO and that the inflammatory response was exacerbated by the co-exposure. The possible pathways of hepatopancreas toxicity were further investigated by transcriptomic analysis. Hepatopancreas inflammation was brought on by subchronic exposure to PHO and co-exposure; this inflammation was exacerbated by co-exposure and was backed by the activation of NF-κB signaling pathway via targeting-related genes. In summary, this research represents the initial documentation, to the best of our understanding of the detrimental effects of exposured to NP and/or PHO at levels found in the environment disrupt the hepatopancreas mucus and mechanical barrier in crustaceans, triggering inflammatory responses. These findings highlight the significance of NP and/or PHO pollution for hepatopancreas health.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"276 \",\"pages\":\"Article 107124\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24002947\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002947","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Nanopolystyrene and phoxim pollution: A threat to hepatopancreas toxicity in Chinese mitten crab (Eriocheir sinensis)
Significant concerns have been raised by the widespread pollutants phoxim (PHO) and nanopolystyrene (NP) in the natural environment. This study evaluated the toxicity effects on the hepatopancreas of Eriocheir sinensis caused by NP and/or PHO at concentrations found in the environment. Subchronic exposure to NP and/or PHO triggered hepatopancreas histological damage within a 21-day exposure period. The NP, PHO, and co-exposure (NPO) groups exhibited fewer blister-like (B) cells, along with the appearance of vacuolation. Furthermore, these exposures induced impairment in the hepatic tubule mucus barrier and mechanical barrier, as evidenced by altered expression of oxidative stress-related genes, mucin-related genes, and TJ-related genes. Additionally, alterations in immunity-related genes and inflammatory cytokine genes expression were observed. The findings showed that hepatopancreas inflammation was caused by both individual and combined exposure to NP and PHO and that the inflammatory response was exacerbated by the co-exposure. The possible pathways of hepatopancreas toxicity were further investigated by transcriptomic analysis. Hepatopancreas inflammation was brought on by subchronic exposure to PHO and co-exposure; this inflammation was exacerbated by co-exposure and was backed by the activation of NF-κB signaling pathway via targeting-related genes. In summary, this research represents the initial documentation, to the best of our understanding of the detrimental effects of exposured to NP and/or PHO at levels found in the environment disrupt the hepatopancreas mucus and mechanical barrier in crustaceans, triggering inflammatory responses. These findings highlight the significance of NP and/or PHO pollution for hepatopancreas health.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.