{"title":"负载不确定情况下电池储能系统运行的优化调度","authors":"Syed Mahbub Rafayal, Aliaa Alnaggar","doi":"10.1016/j.apm.2024.115756","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the optimal scheduling of battery energy storage system operations considering energy load uncertainty. We develop a novel two-stage distributionally robust optimization model to determine an optimal battery usage schedule that minimizes the worst-case energy costs considering peak load costs. The model leverages deep-learning-based probabilistic forecasting in the construction of the ambiguity set. Specifically, we develop a Deep Autoregressive Recurrent Networks model to generate a probabilistic forecast of energy loads over a time horizon. The output of the forecasting model is then used to construct a marginal-moment ambiguity set for the distributionally robust optimization model. To solve the proposed model, we establish a closed-form characterization of the optimal second-stage objective function value. Leveraging this closed-form expression and using second-order conic duality, we derive an exact single-level mixed integer second-order conic reformulation of the problem. Extensive computational experiments, conducted on a real dataset, demonstrate the value of our proposed model and the effectiveness of the resulting battery schedule. The results show that the proposed model outperforms several benchmarks, including two-stage stochastic programming. Furthermore, the accuracy of the load forecast significantly impacts the effectiveness of the optimal battery schedule in eliminating peak loads by achieving up to 18% reduction in the maximum energy load.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"138 ","pages":"Article 115756"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal scheduling of battery energy storage system operations under load uncertainty\",\"authors\":\"Syed Mahbub Rafayal, Aliaa Alnaggar\",\"doi\":\"10.1016/j.apm.2024.115756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the optimal scheduling of battery energy storage system operations considering energy load uncertainty. We develop a novel two-stage distributionally robust optimization model to determine an optimal battery usage schedule that minimizes the worst-case energy costs considering peak load costs. The model leverages deep-learning-based probabilistic forecasting in the construction of the ambiguity set. Specifically, we develop a Deep Autoregressive Recurrent Networks model to generate a probabilistic forecast of energy loads over a time horizon. The output of the forecasting model is then used to construct a marginal-moment ambiguity set for the distributionally robust optimization model. To solve the proposed model, we establish a closed-form characterization of the optimal second-stage objective function value. Leveraging this closed-form expression and using second-order conic duality, we derive an exact single-level mixed integer second-order conic reformulation of the problem. Extensive computational experiments, conducted on a real dataset, demonstrate the value of our proposed model and the effectiveness of the resulting battery schedule. The results show that the proposed model outperforms several benchmarks, including two-stage stochastic programming. Furthermore, the accuracy of the load forecast significantly impacts the effectiveness of the optimal battery schedule in eliminating peak loads by achieving up to 18% reduction in the maximum energy load.</div></div>\",\"PeriodicalId\":50980,\"journal\":{\"name\":\"Applied Mathematical Modelling\",\"volume\":\"138 \",\"pages\":\"Article 115756\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0307904X24005092\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24005092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal scheduling of battery energy storage system operations under load uncertainty
This paper investigates the optimal scheduling of battery energy storage system operations considering energy load uncertainty. We develop a novel two-stage distributionally robust optimization model to determine an optimal battery usage schedule that minimizes the worst-case energy costs considering peak load costs. The model leverages deep-learning-based probabilistic forecasting in the construction of the ambiguity set. Specifically, we develop a Deep Autoregressive Recurrent Networks model to generate a probabilistic forecast of energy loads over a time horizon. The output of the forecasting model is then used to construct a marginal-moment ambiguity set for the distributionally robust optimization model. To solve the proposed model, we establish a closed-form characterization of the optimal second-stage objective function value. Leveraging this closed-form expression and using second-order conic duality, we derive an exact single-level mixed integer second-order conic reformulation of the problem. Extensive computational experiments, conducted on a real dataset, demonstrate the value of our proposed model and the effectiveness of the resulting battery schedule. The results show that the proposed model outperforms several benchmarks, including two-stage stochastic programming. Furthermore, the accuracy of the load forecast significantly impacts the effectiveness of the optimal battery schedule in eliminating peak loads by achieving up to 18% reduction in the maximum energy load.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.