用于木质复合材料的生物仿生智能粘合剂的研究进展

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Limin Wang, Guanyan Li, Qian Ma, Yafeng Yang, Rock Keey Liew, Xiangmeng Chen, Hala M. Abo-Dief, Su Shiung Lam, Rahma Sellami, Wanxi Peng, Wenjie Lu
{"title":"用于木质复合材料的生物仿生智能粘合剂的研究进展","authors":"Limin Wang,&nbsp;Guanyan Li,&nbsp;Qian Ma,&nbsp;Yafeng Yang,&nbsp;Rock Keey Liew,&nbsp;Xiangmeng Chen,&nbsp;Hala M. Abo-Dief,&nbsp;Su Shiung Lam,&nbsp;Rahma Sellami,&nbsp;Wanxi Peng,&nbsp;Wenjie Lu","doi":"10.1007/s42114-024-01006-1","DOIUrl":null,"url":null,"abstract":"<div><p>The application of adhesives is becoming increasingly widespread, and the requirements for adhesive performance are also increasing. People have been learning to design many high-performance materials using the principles of bionics since a long time ago. The structure and secretions of organisms can provide solutions for bionics. Displaying different shapes and functions under different conditions is a challenging task for adhesives to adapt to different environments. Adhesives can composite different materials together, and the addition of different materials can also enhance the functionality of the adhesive. Although there have been many studies on biomimetic adhesives and intelligent bonding, research on biomimetic intelligent composite materials is scarce. This article explores the biomimetic structures of animals and plants, provides a comprehensive review of biomimetic adhesives, and summarises biomimetic intelligent composite materials.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in biomimetic intelligent adhesives for wood composite applications\",\"authors\":\"Limin Wang,&nbsp;Guanyan Li,&nbsp;Qian Ma,&nbsp;Yafeng Yang,&nbsp;Rock Keey Liew,&nbsp;Xiangmeng Chen,&nbsp;Hala M. Abo-Dief,&nbsp;Su Shiung Lam,&nbsp;Rahma Sellami,&nbsp;Wanxi Peng,&nbsp;Wenjie Lu\",\"doi\":\"10.1007/s42114-024-01006-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of adhesives is becoming increasingly widespread, and the requirements for adhesive performance are also increasing. People have been learning to design many high-performance materials using the principles of bionics since a long time ago. The structure and secretions of organisms can provide solutions for bionics. Displaying different shapes and functions under different conditions is a challenging task for adhesives to adapt to different environments. Adhesives can composite different materials together, and the addition of different materials can also enhance the functionality of the adhesive. Although there have been many studies on biomimetic adhesives and intelligent bonding, research on biomimetic intelligent composite materials is scarce. This article explores the biomimetic structures of animals and plants, provides a comprehensive review of biomimetic adhesives, and summarises biomimetic intelligent composite materials.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01006-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01006-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

粘合剂的应用越来越广泛,对粘合剂性能的要求也越来越高。很早以前,人们就开始学习利用仿生学原理设计许多高性能材料。生物体的结构和分泌物可以为仿生学提供解决方案。在不同的条件下显示不同的形状和功能是粘合剂适应不同环境的一项具有挑战性的任务。粘合剂可以将不同的材料复合在一起,添加不同的材料还可以增强粘合剂的功能。虽然关于仿生物粘合剂和智能粘合的研究很多,但关于仿生物智能复合材料的研究却很少。本文探讨了动物和植物的仿生物结构,对仿生物粘合剂进行了全面综述,并对仿生物智能复合材料进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in biomimetic intelligent adhesives for wood composite applications

The application of adhesives is becoming increasingly widespread, and the requirements for adhesive performance are also increasing. People have been learning to design many high-performance materials using the principles of bionics since a long time ago. The structure and secretions of organisms can provide solutions for bionics. Displaying different shapes and functions under different conditions is a challenging task for adhesives to adapt to different environments. Adhesives can composite different materials together, and the addition of different materials can also enhance the functionality of the adhesive. Although there have been many studies on biomimetic adhesives and intelligent bonding, research on biomimetic intelligent composite materials is scarce. This article explores the biomimetic structures of animals and plants, provides a comprehensive review of biomimetic adhesives, and summarises biomimetic intelligent composite materials.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信