磁场对槽腔内非牛顿 NEPCM 双扩散的影响:ANN 模型与 ISPH 模拟

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-05-27 DOI:10.1002/htj.23086
Noura Alsedias, Abdelraheem M. Aly
{"title":"磁场对槽腔内非牛顿 NEPCM 双扩散的影响:ANN 模型与 ISPH 模拟","authors":"Noura Alsedias,&nbsp;Abdelraheem M. Aly","doi":"10.1002/htj.23086","DOIUrl":null,"url":null,"abstract":"<p>Employing phase change materials (PCMs) offers the advantage of storing and releasing thermal energy while ensuring temperature stability. This characteristic makes PCMs valuable for reducing energy usage across various industrial applications. To explore the magnetic effects on double diffusion of a non-Newtonian nano-encapsulated phase change material (NEPCM) in a grooved cavity, the present study combined the incompressible smoothed particle hydrodynamics (ISPH) approach with an artificial neural network (ANN) model. The grooved shape is made up of three constructed grooves: triangular, curved, and rectangular grooves. In the cavity's walls, three segments of boundaries are considered as <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>a</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${{\\rm{\\Gamma }}}_{a}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mi>T</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>h</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>C</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>h</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(T={T}_{h},C={C}_{h})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>b</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${{\\rm{\\Gamma }}}_{b}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mi>T</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>c</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>C</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>c</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(T={T}_{c},C={C}_{c})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>c</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${{\\rm{\\Gamma }}}_{c}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <mo>∂</mo>\n \n <mi>T</mi>\n </mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mi>n</mi>\n </mrow>\n </mfrac>\n \n <mo>=</mo>\n \n <mfrac>\n <mrow>\n <mo>∂</mo>\n \n <mi>C</mi>\n </mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mi>n</mi>\n </mrow>\n </mfrac>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n <annotation> $\\left(\\frac{\\partial T}{\\partial n}=\\frac{\\partial C}{\\partial n}=0\\right)$</annotation>\n </semantics></math>. The ANN model correctly predicted the mean Nusselt number <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mover>\n <mi>Nu</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n </mrow>\n <annotation> $\\mathop{{Nu}}\\limits^{&amp;#773;}$</annotation>\n </semantics></math> and Sherwood number <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mover>\n <mi>Sh</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow>\n </mrow>\n <annotation> $\\mathop{{Sh}}\\limits^{&amp;#773;}$</annotation>\n </semantics></math> when merged with current ISPH simulations. The study's novelty lies in exploring three distinct thermal and mass scenarios regarding double diffusion of a non-Newtonian NEPCM within an innovative grooved domain. The relevant parameters include the fractional-time derivative <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </mrow>\n <annotation> $\\alpha $</annotation>\n </semantics></math>, power-law index <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, Rayleigh number <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Ra</mi>\n </mrow>\n </mrow>\n <annotation> ${Ra}$</annotation>\n </semantics></math>, Hartmann number <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Ha</mi>\n </mrow>\n </mrow>\n <annotation> ${Ha}$</annotation>\n </semantics></math>, Soret–Dufour numbers (<i>Sr</i> and <i>Du</i>), and Lewis number <i>Le</i>. The obtained simulations present the significance of distinct boundary conditions in changing the velocity field, heat capacity ratio, temperature, and concentration in a grooved cavity. The fractional parameter <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </mrow>\n <annotation> $\\alpha $</annotation>\n </semantics></math> accelerates the shift from unstable to steady condition. The increase in <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> from 1.1 to 1.5 results in a 44.5% drop in the velocity maximum. Because of the Lorentz effect of a magnetic field, increasing <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Ha</mi>\n </mrow>\n </mrow>\n <annotation> ${Ha}$</annotation>\n </semantics></math> from 0 to 50 reduces the maximum velocity by 20.9%.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3385-3408"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic impacts on double diffusion of a non-Newtonian NEPCM in a grooved cavity: ANN model with ISPH simulations\",\"authors\":\"Noura Alsedias,&nbsp;Abdelraheem M. Aly\",\"doi\":\"10.1002/htj.23086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Employing phase change materials (PCMs) offers the advantage of storing and releasing thermal energy while ensuring temperature stability. This characteristic makes PCMs valuable for reducing energy usage across various industrial applications. To explore the magnetic effects on double diffusion of a non-Newtonian nano-encapsulated phase change material (NEPCM) in a grooved cavity, the present study combined the incompressible smoothed particle hydrodynamics (ISPH) approach with an artificial neural network (ANN) model. The grooved shape is made up of three constructed grooves: triangular, curved, and rectangular grooves. In the cavity's walls, three segments of boundaries are considered as <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>a</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\rm{\\\\Gamma }}}_{a}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>T</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>h</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>C</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>h</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(T={T}_{h},C={C}_{h})$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>b</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\rm{\\\\Gamma }}}_{b}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>T</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>c</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>C</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>c</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(T={T}_{c},C={C}_{c})$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>c</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\rm{\\\\Gamma }}}_{c}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mo>∂</mo>\\n \\n <mi>T</mi>\\n </mrow>\\n \\n <mrow>\\n <mo>∂</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mfrac>\\n \\n <mo>=</mo>\\n \\n <mfrac>\\n <mrow>\\n <mo>∂</mo>\\n \\n <mi>C</mi>\\n </mrow>\\n \\n <mrow>\\n <mo>∂</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mfrac>\\n \\n <mo>=</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\left(\\\\frac{\\\\partial T}{\\\\partial n}=\\\\frac{\\\\partial C}{\\\\partial n}=0\\\\right)$</annotation>\\n </semantics></math>. The ANN model correctly predicted the mean Nusselt number <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mover>\\n <mi>Nu</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathop{{Nu}}\\\\limits^{&amp;#773;}$</annotation>\\n </semantics></math> and Sherwood number <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mover>\\n <mi>Sh</mi>\\n \\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathop{{Sh}}\\\\limits^{&amp;#773;}$</annotation>\\n </semantics></math> when merged with current ISPH simulations. The study's novelty lies in exploring three distinct thermal and mass scenarios regarding double diffusion of a non-Newtonian NEPCM within an innovative grooved domain. The relevant parameters include the fractional-time derivative <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\alpha $</annotation>\\n </semantics></math>, power-law index <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, Rayleigh number <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Ra</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${Ra}$</annotation>\\n </semantics></math>, Hartmann number <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Ha</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${Ha}$</annotation>\\n </semantics></math>, Soret–Dufour numbers (<i>Sr</i> and <i>Du</i>), and Lewis number <i>Le</i>. The obtained simulations present the significance of distinct boundary conditions in changing the velocity field, heat capacity ratio, temperature, and concentration in a grooved cavity. The fractional parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\alpha $</annotation>\\n </semantics></math> accelerates the shift from unstable to steady condition. The increase in <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> from 1.1 to 1.5 results in a 44.5% drop in the velocity maximum. Because of the Lorentz effect of a magnetic field, increasing <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Ha</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${Ha}$</annotation>\\n </semantics></math> from 0 to 50 reduces the maximum velocity by 20.9%.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 7\",\"pages\":\"3385-3408\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

相关参数包括分时导数 α $\alpha $、幂律指数 n $n$、瑞利数 Ra ${Ra}$ 、哈特曼数 Ha ${Ha}$ 、索雷特-杜富尔数 (Sr 和 Du) 以及路易斯数 Le。模拟结果表明,不同的边界条件对改变槽腔中的速度场、热容比、温度和浓度具有重要意义。分数参数 α $\alpha $ 加快了从不稳定性到稳定状态的转变。n $n$ 从 1.1 增加到 1.5 会导致速度最大值下降 44.5%。由于磁场的洛伦兹效应,Ha ${Ha}$ 从 0 增加到 50 会使最大速度降低 20.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic impacts on double diffusion of a non-Newtonian NEPCM in a grooved cavity: ANN model with ISPH simulations

Employing phase change materials (PCMs) offers the advantage of storing and releasing thermal energy while ensuring temperature stability. This characteristic makes PCMs valuable for reducing energy usage across various industrial applications. To explore the magnetic effects on double diffusion of a non-Newtonian nano-encapsulated phase change material (NEPCM) in a grooved cavity, the present study combined the incompressible smoothed particle hydrodynamics (ISPH) approach with an artificial neural network (ANN) model. The grooved shape is made up of three constructed grooves: triangular, curved, and rectangular grooves. In the cavity's walls, three segments of boundaries are considered as Γ a ${{\rm{\Gamma }}}_{a}$ ( T = T h , C = C h ) $(T={T}_{h},C={C}_{h})$ , Γ b ${{\rm{\Gamma }}}_{b}$ ( T = T c , C = C c ) $(T={T}_{c},C={C}_{c})$ , and Γ c ${{\rm{\Gamma }}}_{c}$ T n = C n = 0 $\left(\frac{\partial T}{\partial n}=\frac{\partial C}{\partial n}=0\right)$ . The ANN model correctly predicted the mean Nusselt number Nu ¯ $\mathop{{Nu}}\limits^{&#773;}$ and Sherwood number Sh ¯ $\mathop{{Sh}}\limits^{&#773;}$ when merged with current ISPH simulations. The study's novelty lies in exploring three distinct thermal and mass scenarios regarding double diffusion of a non-Newtonian NEPCM within an innovative grooved domain. The relevant parameters include the fractional-time derivative α $\alpha $ , power-law index n $n$ , Rayleigh number Ra ${Ra}$ , Hartmann number Ha ${Ha}$ , Soret–Dufour numbers (Sr and Du), and Lewis number Le. The obtained simulations present the significance of distinct boundary conditions in changing the velocity field, heat capacity ratio, temperature, and concentration in a grooved cavity. The fractional parameter α $\alpha $ accelerates the shift from unstable to steady condition. The increase in n $n$ from 1.1 to 1.5 results in a 44.5% drop in the velocity maximum. Because of the Lorentz effect of a magnetic field, increasing Ha ${Ha}$ from 0 to 50 reduces the maximum velocity by 20.9%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信