{"title":"在三氧化钡钛上设计玻璃纳米壳,以抑制烧结过程中纳米晶体的生长,从而制造出细粒度电介质陶瓷","authors":"Jia Yu , Qi Jiang , Qingchao Jia , Liangzhu Zhang , Wenchun Chiu , Huidan Zeng","doi":"10.1016/j.jmat.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><div>Barium titanate (BaTiO<sub>3</sub>, BT) is one of the key dielectric materials for multilayer ceramic capacitor (MLCC) industry. To meet the development trend of miniaturization and high capacity of MLCC, the sintered ceramic with nanosized grain is required. Herein, we demonstrate a controllable preparation of fine-grain BaTiO<sub>3</sub> ceramic by using sol-gel glass encapsulation strategy to suppress the growth of nanocrystal during sintering. It is found that the BaTiO<sub>3</sub> nanocrystal with average lateral particle size of 70 nm and 200 nm (BT70 and BT200) can be coated with Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (BBS) glass shell to form core-shell structures. The fine crystal of barium titanate ceramics can be achieved under different encapsulation quantities and sintering temperature. However, BT70, with a larger specific surface area, higher reactivity, and lower crystallinity, was more prone to hydrolyze in the sol-gel process, leading to the formation of a new phase after sintering, Ba<sub>2</sub>TiSi<sub>2</sub>O<sub>8</sub>, which adversely affected both the sintering behavior and dielectric properties. On the other hand, BT200 exhibited lower possibility to hydrolyze in the sol-gel process, resulting in single-phase ceramics after sintering. When the BT200 coated with 5% (in mass) BBS was sintered at 1100 °C, a dense BaTiO<sub>3</sub> ceramic were obtained, with dielectric constant of 1194.23 and loss of 0.0139 at room temperature and 1 kHz. Therefore, this work provides a robust strategy for suppressing the nanocrystal growth during sintering for MLCC applications.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 2","pages":"Article 100883"},"PeriodicalIF":8.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a glass nanoshell on barium titanium trioxide to suppress nanocrystal growth during sintering for fine-grain dielectric ceramics\",\"authors\":\"Jia Yu , Qi Jiang , Qingchao Jia , Liangzhu Zhang , Wenchun Chiu , Huidan Zeng\",\"doi\":\"10.1016/j.jmat.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Barium titanate (BaTiO<sub>3</sub>, BT) is one of the key dielectric materials for multilayer ceramic capacitor (MLCC) industry. To meet the development trend of miniaturization and high capacity of MLCC, the sintered ceramic with nanosized grain is required. Herein, we demonstrate a controllable preparation of fine-grain BaTiO<sub>3</sub> ceramic by using sol-gel glass encapsulation strategy to suppress the growth of nanocrystal during sintering. It is found that the BaTiO<sub>3</sub> nanocrystal with average lateral particle size of 70 nm and 200 nm (BT70 and BT200) can be coated with Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (BBS) glass shell to form core-shell structures. The fine crystal of barium titanate ceramics can be achieved under different encapsulation quantities and sintering temperature. However, BT70, with a larger specific surface area, higher reactivity, and lower crystallinity, was more prone to hydrolyze in the sol-gel process, leading to the formation of a new phase after sintering, Ba<sub>2</sub>TiSi<sub>2</sub>O<sub>8</sub>, which adversely affected both the sintering behavior and dielectric properties. On the other hand, BT200 exhibited lower possibility to hydrolyze in the sol-gel process, resulting in single-phase ceramics after sintering. When the BT200 coated with 5% (in mass) BBS was sintered at 1100 °C, a dense BaTiO<sub>3</sub> ceramic were obtained, with dielectric constant of 1194.23 and loss of 0.0139 at room temperature and 1 kHz. Therefore, this work provides a robust strategy for suppressing the nanocrystal growth during sintering for MLCC applications.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 2\",\"pages\":\"Article 100883\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001096\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001096","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Designing a glass nanoshell on barium titanium trioxide to suppress nanocrystal growth during sintering for fine-grain dielectric ceramics
Barium titanate (BaTiO3, BT) is one of the key dielectric materials for multilayer ceramic capacitor (MLCC) industry. To meet the development trend of miniaturization and high capacity of MLCC, the sintered ceramic with nanosized grain is required. Herein, we demonstrate a controllable preparation of fine-grain BaTiO3 ceramic by using sol-gel glass encapsulation strategy to suppress the growth of nanocrystal during sintering. It is found that the BaTiO3 nanocrystal with average lateral particle size of 70 nm and 200 nm (BT70 and BT200) can be coated with Bi2O3-B2O3-SiO2 (BBS) glass shell to form core-shell structures. The fine crystal of barium titanate ceramics can be achieved under different encapsulation quantities and sintering temperature. However, BT70, with a larger specific surface area, higher reactivity, and lower crystallinity, was more prone to hydrolyze in the sol-gel process, leading to the formation of a new phase after sintering, Ba2TiSi2O8, which adversely affected both the sintering behavior and dielectric properties. On the other hand, BT200 exhibited lower possibility to hydrolyze in the sol-gel process, resulting in single-phase ceramics after sintering. When the BT200 coated with 5% (in mass) BBS was sintered at 1100 °C, a dense BaTiO3 ceramic were obtained, with dielectric constant of 1194.23 and loss of 0.0139 at room temperature and 1 kHz. Therefore, this work provides a robust strategy for suppressing the nanocrystal growth during sintering for MLCC applications.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.