Mengmou Li , Khaled Laib , Takeshi Hatanaka , Ioannis Lestas
{"title":"镜像下降法的收敛率边界:IQCs、波波夫准则和布雷格曼发散","authors":"Mengmou Li , Khaled Laib , Takeshi Hatanaka , Ioannis Lestas","doi":"10.1016/j.automatica.2024.111973","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive convergence analysis for the mirror descent (MD) method, a widely used algorithm in convex optimization. The key feature of this algorithm is that it provides a generalization of classical gradient-based methods via the use of generalized distance-like functions, which are formulated using the Bregman divergence. Establishing convergence rate bounds for this algorithm is in general a non-trivial problem due to the lack of monotonicity properties in the composite nonlinearities involved. In this paper, we show that the Bregman divergence from the optimal solution, which is commonly used as a Lyapunov function for this algorithm, is a special case of Lyapunov functions that follow when the Popov criterion is applied to an appropriate reformulation of the MD dynamics. This is then used as a basis to construct an integral quadratic constraint (IQC) framework through which convergence rate bounds with reduced conservatism can be deduced. We also illustrate via examples that the convergence rate bounds derived can be tight.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111973"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence rate bounds for the mirror descent method: IQCs, Popov criterion and Bregman divergence\",\"authors\":\"Mengmou Li , Khaled Laib , Takeshi Hatanaka , Ioannis Lestas\",\"doi\":\"10.1016/j.automatica.2024.111973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a comprehensive convergence analysis for the mirror descent (MD) method, a widely used algorithm in convex optimization. The key feature of this algorithm is that it provides a generalization of classical gradient-based methods via the use of generalized distance-like functions, which are formulated using the Bregman divergence. Establishing convergence rate bounds for this algorithm is in general a non-trivial problem due to the lack of monotonicity properties in the composite nonlinearities involved. In this paper, we show that the Bregman divergence from the optimal solution, which is commonly used as a Lyapunov function for this algorithm, is a special case of Lyapunov functions that follow when the Popov criterion is applied to an appropriate reformulation of the MD dynamics. This is then used as a basis to construct an integral quadratic constraint (IQC) framework through which convergence rate bounds with reduced conservatism can be deduced. We also illustrate via examples that the convergence rate bounds derived can be tight.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"171 \",\"pages\":\"Article 111973\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004679\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004679","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Convergence rate bounds for the mirror descent method: IQCs, Popov criterion and Bregman divergence
This paper presents a comprehensive convergence analysis for the mirror descent (MD) method, a widely used algorithm in convex optimization. The key feature of this algorithm is that it provides a generalization of classical gradient-based methods via the use of generalized distance-like functions, which are formulated using the Bregman divergence. Establishing convergence rate bounds for this algorithm is in general a non-trivial problem due to the lack of monotonicity properties in the composite nonlinearities involved. In this paper, we show that the Bregman divergence from the optimal solution, which is commonly used as a Lyapunov function for this algorithm, is a special case of Lyapunov functions that follow when the Popov criterion is applied to an appropriate reformulation of the MD dynamics. This is then used as a basis to construct an integral quadratic constraint (IQC) framework through which convergence rate bounds with reduced conservatism can be deduced. We also illustrate via examples that the convergence rate bounds derived can be tight.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.