Safaa Lahayrech , Anas El Maakoul , Alain Degiovanni , Ismail Khay , Monica Siroux
{"title":"基于四极杆的快速分析模型,用于解决通风双层墙体的瞬态传热问题并评估其节能潜力","authors":"Safaa Lahayrech , Anas El Maakoul , Alain Degiovanni , Ismail Khay , Monica Siroux","doi":"10.1016/j.ijthermalsci.2024.109463","DOIUrl":null,"url":null,"abstract":"<div><div>This research proposes a fast and accurate method for modeling transient heat transfer in ventilated double-skin façades (VDFs) with forced ventilation to predict their energy-saving potential. Using the thermal quadrupole formalism, the method solves the VDF problem in the Laplace domain while considering the full transient nature of the heat transfer; the only approximation is in space. The solution involves obtaining a general transfer function that predicts heat transfer rates or air temperatures at ventilated cavity's exit. The quadrupole method is validated against computational fluid dynamic numerical simulations conducted under similar meteorological, design and boundary conditions. A very good agreement was found (less than 3 % average deviation) with a significant reduction in computation time (less than 3s against 6h for CFD calculations). The model is computationally efficient and can consider important factors such as the opacity of the walls, construction materials, and air cavity design parameters. Finally, the model allows the assessment of the energy-saving potential of VDFs under various scenarios compared to conventional systems, which helps contributing to more sustainable building design practices. The energy efficiency of a VDF configuration was compared against a conventional wall system. Energy savings of 8.4 and 5.2 % were obtained, in cold and hot climates respectively.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109463"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast quadrupole-based analytical model for solving transient heat transfer in ventilated double-skin walls and assessing their energy saving potential\",\"authors\":\"Safaa Lahayrech , Anas El Maakoul , Alain Degiovanni , Ismail Khay , Monica Siroux\",\"doi\":\"10.1016/j.ijthermalsci.2024.109463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research proposes a fast and accurate method for modeling transient heat transfer in ventilated double-skin façades (VDFs) with forced ventilation to predict their energy-saving potential. Using the thermal quadrupole formalism, the method solves the VDF problem in the Laplace domain while considering the full transient nature of the heat transfer; the only approximation is in space. The solution involves obtaining a general transfer function that predicts heat transfer rates or air temperatures at ventilated cavity's exit. The quadrupole method is validated against computational fluid dynamic numerical simulations conducted under similar meteorological, design and boundary conditions. A very good agreement was found (less than 3 % average deviation) with a significant reduction in computation time (less than 3s against 6h for CFD calculations). The model is computationally efficient and can consider important factors such as the opacity of the walls, construction materials, and air cavity design parameters. Finally, the model allows the assessment of the energy-saving potential of VDFs under various scenarios compared to conventional systems, which helps contributing to more sustainable building design practices. The energy efficiency of a VDF configuration was compared against a conventional wall system. Energy savings of 8.4 and 5.2 % were obtained, in cold and hot climates respectively.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"208 \",\"pages\":\"Article 109463\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924005854\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005854","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A fast quadrupole-based analytical model for solving transient heat transfer in ventilated double-skin walls and assessing their energy saving potential
This research proposes a fast and accurate method for modeling transient heat transfer in ventilated double-skin façades (VDFs) with forced ventilation to predict their energy-saving potential. Using the thermal quadrupole formalism, the method solves the VDF problem in the Laplace domain while considering the full transient nature of the heat transfer; the only approximation is in space. The solution involves obtaining a general transfer function that predicts heat transfer rates or air temperatures at ventilated cavity's exit. The quadrupole method is validated against computational fluid dynamic numerical simulations conducted under similar meteorological, design and boundary conditions. A very good agreement was found (less than 3 % average deviation) with a significant reduction in computation time (less than 3s against 6h for CFD calculations). The model is computationally efficient and can consider important factors such as the opacity of the walls, construction materials, and air cavity design parameters. Finally, the model allows the assessment of the energy-saving potential of VDFs under various scenarios compared to conventional systems, which helps contributing to more sustainable building design practices. The energy efficiency of a VDF configuration was compared against a conventional wall system. Energy savings of 8.4 and 5.2 % were obtained, in cold and hot climates respectively.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.