Hui Shi , Jiazuo Wei , Tiantian Xu , Yulei Guan , Jingjun Liu
{"title":"使用 2-戊酮、环己酮和 4-甲基-2-戊酮从甘油中萃取碳酸甘油酯的液液平衡数据的测定和相关性研究","authors":"Hui Shi , Jiazuo Wei , Tiantian Xu , Yulei Guan , Jingjun Liu","doi":"10.1016/j.fluid.2024.114242","DOIUrl":null,"url":null,"abstract":"<div><div>Glycerol carbonate, a high-value derivative of glycerol, finds extensive applications in the cosmetics, pharmaceuticals, and food industries, as well as in plasticizers and battery electrolytes. This study assessed the feasibility of extracting glycerol carbonate from glycerol using three solvents: 2-pentanone, cyclohexanone, and 4-methyl-2-pentanone. The extraction performance of these solvents was evaluated through liquid-liquid equilibrium (LLE) measurements at atmospheric pressure and temperatures of 303.2 K, 313.2 K, and 323.2 K. Although 4-methyl-2-pentanone exhibited high extraction selectivity, the distribution coefficient of glycerol carbonate in it was less than one. Conversely, while cyclohexanone provided a high distribution coefficient, its extraction selectivity was low. In contrast, 2-pentanone demonstrated a relatively balanced extraction selectivity and capacity. The Non-Random Two-Liquid (NRTL) model was used as an activity model in the equilibrium data correlation, and the corresponding binary interaction parameters were estimated. The regressed parameters of the NRTL model successfully reproduced the phase equilibrium trends observed for all systems investigated, facilitating process design and solvent screening for glycerol carbonate extraction from glycerol.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114242"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination and correlation of liquid-liquid equilibrium data for the extraction of glycerol carbonate from glycerol using 2-pentanone, cyclohexanone, and 4-methyl-2-pentanone\",\"authors\":\"Hui Shi , Jiazuo Wei , Tiantian Xu , Yulei Guan , Jingjun Liu\",\"doi\":\"10.1016/j.fluid.2024.114242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glycerol carbonate, a high-value derivative of glycerol, finds extensive applications in the cosmetics, pharmaceuticals, and food industries, as well as in plasticizers and battery electrolytes. This study assessed the feasibility of extracting glycerol carbonate from glycerol using three solvents: 2-pentanone, cyclohexanone, and 4-methyl-2-pentanone. The extraction performance of these solvents was evaluated through liquid-liquid equilibrium (LLE) measurements at atmospheric pressure and temperatures of 303.2 K, 313.2 K, and 323.2 K. Although 4-methyl-2-pentanone exhibited high extraction selectivity, the distribution coefficient of glycerol carbonate in it was less than one. Conversely, while cyclohexanone provided a high distribution coefficient, its extraction selectivity was low. In contrast, 2-pentanone demonstrated a relatively balanced extraction selectivity and capacity. The Non-Random Two-Liquid (NRTL) model was used as an activity model in the equilibrium data correlation, and the corresponding binary interaction parameters were estimated. The regressed parameters of the NRTL model successfully reproduced the phase equilibrium trends observed for all systems investigated, facilitating process design and solvent screening for glycerol carbonate extraction from glycerol.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"588 \",\"pages\":\"Article 114242\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224002176\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002176","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Determination and correlation of liquid-liquid equilibrium data for the extraction of glycerol carbonate from glycerol using 2-pentanone, cyclohexanone, and 4-methyl-2-pentanone
Glycerol carbonate, a high-value derivative of glycerol, finds extensive applications in the cosmetics, pharmaceuticals, and food industries, as well as in plasticizers and battery electrolytes. This study assessed the feasibility of extracting glycerol carbonate from glycerol using three solvents: 2-pentanone, cyclohexanone, and 4-methyl-2-pentanone. The extraction performance of these solvents was evaluated through liquid-liquid equilibrium (LLE) measurements at atmospheric pressure and temperatures of 303.2 K, 313.2 K, and 323.2 K. Although 4-methyl-2-pentanone exhibited high extraction selectivity, the distribution coefficient of glycerol carbonate in it was less than one. Conversely, while cyclohexanone provided a high distribution coefficient, its extraction selectivity was low. In contrast, 2-pentanone demonstrated a relatively balanced extraction selectivity and capacity. The Non-Random Two-Liquid (NRTL) model was used as an activity model in the equilibrium data correlation, and the corresponding binary interaction parameters were estimated. The regressed parameters of the NRTL model successfully reproduced the phase equilibrium trends observed for all systems investigated, facilitating process design and solvent screening for glycerol carbonate extraction from glycerol.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.