利用生物相容性和电活性双金属铁锰氧化物阴极促进微生物二氧化碳电还原以生产醋酸盐

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin Du, Hebin Liang, Yubin Zou, Bing Li, Xiao-yan Li, Lin Lin
{"title":"利用生物相容性和电活性双金属铁锰氧化物阴极促进微生物二氧化碳电还原以生产醋酸盐","authors":"Jin Du, Hebin Liang, Yubin Zou, Bing Li, Xiao-yan Li, Lin Lin","doi":"10.1021/acssuschemeng.4c06214","DOIUrl":null,"url":null,"abstract":"The electroreduction of carbon dioxide (CO<sub>2</sub>) to high-value organic chemicals by the microbial electrosynthesis (MES) system relies heavily on the electrochemical properties of the electrode materials. In this work, CO<sub>2</sub> reduction for acetate production was greatly boosted by decorating the carbon felt cathode using the Fe–Mn bimetallic oxides, using an enriched anaerobic mixed culture dominated by the homoacetogen <i>Acetobacterium wieringae</i>. In comparison with the unmodified carbon felt as the cathode in the MES reactor, modification with MnFe<sub>2</sub>O<sub>4</sub> increased the acetate production rate from 28 to 78 g/(m<sup>2</sup>·d), higher than those with MnO at 59 g/(m<sup>2</sup>·d) and Fe<sub>2</sub>O<sub>3</sub> at 62 g/(m<sup>2</sup>·d), and the relative abundance of <i>A. wieringae</i> increased dramatically from 51 to 87% in the biofilm. This was probably due to the mediated electron uptake <i>via</i> the redox cycles of Mn(III)/(II) and Fe(III)/(II), improved specific surface area, and enhanced hydrophilicity of the cathode, benefiting from the synergistic effect of Fe and Mn ions. Overall, this study provides a facile and promising electrode modification strategy for MES with Fe–Mn bimetallic oxides for efficient CO<sub>2</sub> conversion and acetate production, bringing the world closer to achieving carbon neutrality.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Microbial CO2 Electroreduction by the Biocompatible and Electroactive Bimetallic Fe–Mn Oxide Cathode for Acetate Production\",\"authors\":\"Jin Du, Hebin Liang, Yubin Zou, Bing Li, Xiao-yan Li, Lin Lin\",\"doi\":\"10.1021/acssuschemeng.4c06214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electroreduction of carbon dioxide (CO<sub>2</sub>) to high-value organic chemicals by the microbial electrosynthesis (MES) system relies heavily on the electrochemical properties of the electrode materials. In this work, CO<sub>2</sub> reduction for acetate production was greatly boosted by decorating the carbon felt cathode using the Fe–Mn bimetallic oxides, using an enriched anaerobic mixed culture dominated by the homoacetogen <i>Acetobacterium wieringae</i>. In comparison with the unmodified carbon felt as the cathode in the MES reactor, modification with MnFe<sub>2</sub>O<sub>4</sub> increased the acetate production rate from 28 to 78 g/(m<sup>2</sup>·d), higher than those with MnO at 59 g/(m<sup>2</sup>·d) and Fe<sub>2</sub>O<sub>3</sub> at 62 g/(m<sup>2</sup>·d), and the relative abundance of <i>A. wieringae</i> increased dramatically from 51 to 87% in the biofilm. This was probably due to the mediated electron uptake <i>via</i> the redox cycles of Mn(III)/(II) and Fe(III)/(II), improved specific surface area, and enhanced hydrophilicity of the cathode, benefiting from the synergistic effect of Fe and Mn ions. Overall, this study provides a facile and promising electrode modification strategy for MES with Fe–Mn bimetallic oxides for efficient CO<sub>2</sub> conversion and acetate production, bringing the world closer to achieving carbon neutrality.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c06214\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c06214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过微生物电合成(MES)系统将二氧化碳(CO2)电还原成高价值有机化学品在很大程度上依赖于电极材料的电化学特性。在这项工作中,通过使用铁锰双金属氧化物装饰碳毡阴极,并使用以均乙酸菌 Acetobacterium wieringae 为主导的富集厌氧混合培养物,大大提高了生产醋酸的二氧化碳还原能力。与未经改性的碳毡作为 MES 反应器的阴极相比,使用 MnFe2O4 进行改性可将醋酸生产率从 28 g/(m2-d) 提高到 78 g/(m2-d),高于使用 MnO 的 59 g/(m2-d) 和 Fe2O3 的 62 g/(m2-d)。这可能是由于 Mn(III)/(II)和 Fe(III)/(II)的氧化还原循环促进了电子吸收,提高了比表面积,以及阴极亲水性的增强,受益于 Fe 和 Mn 离子的协同效应。总之,这项研究为使用铁锰双金属氧化物进行 MES 的电极改性提供了一种简便而有前景的策略,可用于高效的二氧化碳转化和醋酸盐生产,从而使世界离实现碳中和更近一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting Microbial CO2 Electroreduction by the Biocompatible and Electroactive Bimetallic Fe–Mn Oxide Cathode for Acetate Production

Boosting Microbial CO2 Electroreduction by the Biocompatible and Electroactive Bimetallic Fe–Mn Oxide Cathode for Acetate Production
The electroreduction of carbon dioxide (CO2) to high-value organic chemicals by the microbial electrosynthesis (MES) system relies heavily on the electrochemical properties of the electrode materials. In this work, CO2 reduction for acetate production was greatly boosted by decorating the carbon felt cathode using the Fe–Mn bimetallic oxides, using an enriched anaerobic mixed culture dominated by the homoacetogen Acetobacterium wieringae. In comparison with the unmodified carbon felt as the cathode in the MES reactor, modification with MnFe2O4 increased the acetate production rate from 28 to 78 g/(m2·d), higher than those with MnO at 59 g/(m2·d) and Fe2O3 at 62 g/(m2·d), and the relative abundance of A. wieringae increased dramatically from 51 to 87% in the biofilm. This was probably due to the mediated electron uptake via the redox cycles of Mn(III)/(II) and Fe(III)/(II), improved specific surface area, and enhanced hydrophilicity of the cathode, benefiting from the synergistic effect of Fe and Mn ions. Overall, this study provides a facile and promising electrode modification strategy for MES with Fe–Mn bimetallic oxides for efficient CO2 conversion and acetate production, bringing the world closer to achieving carbon neutrality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信