{"title":"基于 GRA-BiLSTM 的中国新能源汽车报废电池金属回收潜力预测。","authors":"Bingchun Liu, Xiao Liu","doi":"10.1016/j.wasman.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>As Chinese new energy vehicle (NEV) sales continue to grow, end-of-life batteries have great potential for recycling in the future. In this study, a combined model based on Gray Relation Analysis and Bi-directional Long Short-Term Memory (GRA-BiLSTM) is proposed for predicting NEV sales, and the NEV battery life is modeled using the Weibull distribution. Then, the amount of end-of-life batteries, secondary utilization and metal recycling are calculated. The impact of end-of-life battery recycling on the supply and demand of key metals is studied. The results show that in 2040, the secondary utilization of end-of-life batteries in the Standard Growth Rate-Lithium Iron Phosphate Battery Dominated-High Secondary Utilization rate scenario (SGR-LFP<sub>H</sub>) is 391.76 GWh. The recycling volumes of lithium, nickel and cobalt are 45,900 tons, 92,900 tons and 22,100 tons, respectively. In the Standard Growth Rate-lithium nickel cobalt manganese oxide Battery Dominated-Low Secondary Utilization rate scenario (SGR-NCM<sub>L</sub>), the recycling of lithium, nickel and cobalt is even greater, at 62,600 tons, 372,200 tons and 71,700 tons, respectively. End-of-life batteries recycling can reduce the demand for metals. However, as NEV sales continue to grow, the gap between metal supply and demand remains significant. The findings urge the Chinese government develop appropriate battery management strategies to increase the recycling rate of end-of-life batteries; and to encourage enterprises to research new types of batteries to resolve the conflict between supply and demand for metals.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"190 ","pages":"Pages 339-349"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of metal recovery potential of end-of-life NEV batteries in China based on GRA-BiLSTM\",\"authors\":\"Bingchun Liu, Xiao Liu\",\"doi\":\"10.1016/j.wasman.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As Chinese new energy vehicle (NEV) sales continue to grow, end-of-life batteries have great potential for recycling in the future. In this study, a combined model based on Gray Relation Analysis and Bi-directional Long Short-Term Memory (GRA-BiLSTM) is proposed for predicting NEV sales, and the NEV battery life is modeled using the Weibull distribution. Then, the amount of end-of-life batteries, secondary utilization and metal recycling are calculated. The impact of end-of-life battery recycling on the supply and demand of key metals is studied. The results show that in 2040, the secondary utilization of end-of-life batteries in the Standard Growth Rate-Lithium Iron Phosphate Battery Dominated-High Secondary Utilization rate scenario (SGR-LFP<sub>H</sub>) is 391.76 GWh. The recycling volumes of lithium, nickel and cobalt are 45,900 tons, 92,900 tons and 22,100 tons, respectively. In the Standard Growth Rate-lithium nickel cobalt manganese oxide Battery Dominated-Low Secondary Utilization rate scenario (SGR-NCM<sub>L</sub>), the recycling of lithium, nickel and cobalt is even greater, at 62,600 tons, 372,200 tons and 71,700 tons, respectively. End-of-life batteries recycling can reduce the demand for metals. However, as NEV sales continue to grow, the gap between metal supply and demand remains significant. The findings urge the Chinese government develop appropriate battery management strategies to increase the recycling rate of end-of-life batteries; and to encourage enterprises to research new types of batteries to resolve the conflict between supply and demand for metals.</div></div>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"190 \",\"pages\":\"Pages 339-349\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956053X24005233\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24005233","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Prediction of metal recovery potential of end-of-life NEV batteries in China based on GRA-BiLSTM
As Chinese new energy vehicle (NEV) sales continue to grow, end-of-life batteries have great potential for recycling in the future. In this study, a combined model based on Gray Relation Analysis and Bi-directional Long Short-Term Memory (GRA-BiLSTM) is proposed for predicting NEV sales, and the NEV battery life is modeled using the Weibull distribution. Then, the amount of end-of-life batteries, secondary utilization and metal recycling are calculated. The impact of end-of-life battery recycling on the supply and demand of key metals is studied. The results show that in 2040, the secondary utilization of end-of-life batteries in the Standard Growth Rate-Lithium Iron Phosphate Battery Dominated-High Secondary Utilization rate scenario (SGR-LFPH) is 391.76 GWh. The recycling volumes of lithium, nickel and cobalt are 45,900 tons, 92,900 tons and 22,100 tons, respectively. In the Standard Growth Rate-lithium nickel cobalt manganese oxide Battery Dominated-Low Secondary Utilization rate scenario (SGR-NCML), the recycling of lithium, nickel and cobalt is even greater, at 62,600 tons, 372,200 tons and 71,700 tons, respectively. End-of-life batteries recycling can reduce the demand for metals. However, as NEV sales continue to grow, the gap between metal supply and demand remains significant. The findings urge the Chinese government develop appropriate battery management strategies to increase the recycling rate of end-of-life batteries; and to encourage enterprises to research new types of batteries to resolve the conflict between supply and demand for metals.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)