{"title":"基于通用开关电容器的混合多电平逆变器可减少元件数量和浪涌电流","authors":"Niraj Kishore;Kapil Shukla;Nitin Gupta","doi":"10.1109/TCSI.2024.3443188","DOIUrl":null,"url":null,"abstract":"This article presents a novel topology for a three-phase switched-capacitor (SC) based hybrid multilevel inverter (HMLI) with boosted output voltage. The proposed topology employs generalised structure of SC-based inverters (SCBIs) to improve the output voltage levels utilising SC cells. The proposed structure additionally features self-charging and voltage-balancing capabilities of the SCs, without the need of auxiliary circuit/sensor. A modified PWM (MPWM) technique is utilized to modulate the system. The MPWM results in improved output voltage profile and reduction in voltage ripple across the SCs. The proposed structure is quantitatively compared with the state-of-the-art topologies to demonstrate its advantages in the terms of reduced components count, low maximum blocking voltage (MBV), low total standing voltage (TSV), lessened total harmonic distortion (THD), lowered cost function (CF) per level, and boosted output voltage. The performance of the proposed topology is verified in MATLAB/Simulink environment and a laboratory prototype is developed to confirm the feasibility to operate at steady-state and dynamic conditions.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 10","pages":"4887-4896"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Switched-Capacitor-Based Hybrid Multilevel Inverter With Reduced Components Count and Inrush Current\",\"authors\":\"Niraj Kishore;Kapil Shukla;Nitin Gupta\",\"doi\":\"10.1109/TCSI.2024.3443188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel topology for a three-phase switched-capacitor (SC) based hybrid multilevel inverter (HMLI) with boosted output voltage. The proposed topology employs generalised structure of SC-based inverters (SCBIs) to improve the output voltage levels utilising SC cells. The proposed structure additionally features self-charging and voltage-balancing capabilities of the SCs, without the need of auxiliary circuit/sensor. A modified PWM (MPWM) technique is utilized to modulate the system. The MPWM results in improved output voltage profile and reduction in voltage ripple across the SCs. The proposed structure is quantitatively compared with the state-of-the-art topologies to demonstrate its advantages in the terms of reduced components count, low maximum blocking voltage (MBV), low total standing voltage (TSV), lessened total harmonic distortion (THD), lowered cost function (CF) per level, and boosted output voltage. The performance of the proposed topology is verified in MATLAB/Simulink environment and a laboratory prototype is developed to confirm the feasibility to operate at steady-state and dynamic conditions.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"71 10\",\"pages\":\"4887-4896\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10640161/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10640161/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Generalized Switched-Capacitor-Based Hybrid Multilevel Inverter With Reduced Components Count and Inrush Current
This article presents a novel topology for a three-phase switched-capacitor (SC) based hybrid multilevel inverter (HMLI) with boosted output voltage. The proposed topology employs generalised structure of SC-based inverters (SCBIs) to improve the output voltage levels utilising SC cells. The proposed structure additionally features self-charging and voltage-balancing capabilities of the SCs, without the need of auxiliary circuit/sensor. A modified PWM (MPWM) technique is utilized to modulate the system. The MPWM results in improved output voltage profile and reduction in voltage ripple across the SCs. The proposed structure is quantitatively compared with the state-of-the-art topologies to demonstrate its advantages in the terms of reduced components count, low maximum blocking voltage (MBV), low total standing voltage (TSV), lessened total harmonic distortion (THD), lowered cost function (CF) per level, and boosted output voltage. The performance of the proposed topology is verified in MATLAB/Simulink environment and a laboratory prototype is developed to confirm the feasibility to operate at steady-state and dynamic conditions.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.