{"title":"基于反事实推理的社交网络用户对齐算法","authors":"Ling Xing;Yuanhao Huang;Qi Zhang;Honghai Wu;Huahong Ma;Xiaohui Zhang","doi":"10.1109/TCSS.2024.3405999","DOIUrl":null,"url":null,"abstract":"User alignment refers to linking a user's accounts across multiple social networks, which is important for studying community discovery, recommendation systems, and other related fields. However, existing methods primarily perform user alignment by correlating user features, neglecting the causal relationship between network topology and user alignment, which makes it challenging to achieve superior user alignment accuracy and generalization capabilities. Therefore, we propose a counterfactual inference-based social network user-alignment algorithm (CINUA). This improves user connection retention due to the non-Euclidean geometric characterization of hyperbolic spaces. The similarity of aligned users is augmented using a hyperbolic graph attention network. User-feature embedding and fusion facilitate user relevance mining. Furthermore, there are causal relationships between network topology structure and user linkages. In various communities, there are some highly similar user pairs, and based on counterfactual inference, the network topology is adjusted to enhance sample diversity. Multilevel factual and counterfactual networks are constructed through iterative diffusion based on user alignment and their linkages. By integrating the users’ causal features in multiple networks, the accuracy and generalization capabilities of the user alignment model are effectively improved. In this article, the experimental results indicate that CINUA achieves a user alignment accuracy improvement of 5.98% and 3.03%, on two datasets respectively compared to the baseline methods on average. CINUA can achieve favorable alignment results even when the training dataset is small. This demonstrates that our algorithm can ensure both user alignment accuracy and generalization capability.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 5","pages":"6939-6952"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Counterfactual Inference-Based Social Network User-Alignment Algorithm\",\"authors\":\"Ling Xing;Yuanhao Huang;Qi Zhang;Honghai Wu;Huahong Ma;Xiaohui Zhang\",\"doi\":\"10.1109/TCSS.2024.3405999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User alignment refers to linking a user's accounts across multiple social networks, which is important for studying community discovery, recommendation systems, and other related fields. However, existing methods primarily perform user alignment by correlating user features, neglecting the causal relationship between network topology and user alignment, which makes it challenging to achieve superior user alignment accuracy and generalization capabilities. Therefore, we propose a counterfactual inference-based social network user-alignment algorithm (CINUA). This improves user connection retention due to the non-Euclidean geometric characterization of hyperbolic spaces. The similarity of aligned users is augmented using a hyperbolic graph attention network. User-feature embedding and fusion facilitate user relevance mining. Furthermore, there are causal relationships between network topology structure and user linkages. In various communities, there are some highly similar user pairs, and based on counterfactual inference, the network topology is adjusted to enhance sample diversity. Multilevel factual and counterfactual networks are constructed through iterative diffusion based on user alignment and their linkages. By integrating the users’ causal features in multiple networks, the accuracy and generalization capabilities of the user alignment model are effectively improved. In this article, the experimental results indicate that CINUA achieves a user alignment accuracy improvement of 5.98% and 3.03%, on two datasets respectively compared to the baseline methods on average. CINUA can achieve favorable alignment results even when the training dataset is small. This demonstrates that our algorithm can ensure both user alignment accuracy and generalization capability.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"11 5\",\"pages\":\"6939-6952\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614937/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10614937/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
A Counterfactual Inference-Based Social Network User-Alignment Algorithm
User alignment refers to linking a user's accounts across multiple social networks, which is important for studying community discovery, recommendation systems, and other related fields. However, existing methods primarily perform user alignment by correlating user features, neglecting the causal relationship between network topology and user alignment, which makes it challenging to achieve superior user alignment accuracy and generalization capabilities. Therefore, we propose a counterfactual inference-based social network user-alignment algorithm (CINUA). This improves user connection retention due to the non-Euclidean geometric characterization of hyperbolic spaces. The similarity of aligned users is augmented using a hyperbolic graph attention network. User-feature embedding and fusion facilitate user relevance mining. Furthermore, there are causal relationships between network topology structure and user linkages. In various communities, there are some highly similar user pairs, and based on counterfactual inference, the network topology is adjusted to enhance sample diversity. Multilevel factual and counterfactual networks are constructed through iterative diffusion based on user alignment and their linkages. By integrating the users’ causal features in multiple networks, the accuracy and generalization capabilities of the user alignment model are effectively improved. In this article, the experimental results indicate that CINUA achieves a user alignment accuracy improvement of 5.98% and 3.03%, on two datasets respectively compared to the baseline methods on average. CINUA can achieve favorable alignment results even when the training dataset is small. This demonstrates that our algorithm can ensure both user alignment accuracy and generalization capability.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.