Koray Yavuz, A Mahy Soler, Ramón Zaera, Seymur Jahangirov
{"title":"蜘蛛重量对垂直球网信号透射率的影响","authors":"Koray Yavuz, A Mahy Soler, Ramón Zaera, Seymur Jahangirov","doi":"10.1098/rsos.240986","DOIUrl":null,"url":null,"abstract":"<p><p>Spider orb web is a sophisticated structure that needs to fulfil multiple roles, such as trapping prey and transmitting web-borne signals. When building their web, heavier spiders tend to increase the pretension on the web, which seems counterintuitive since a tighter web would decrease the chances of stopping and retaining prey. In this article, we claim that heavier orb-weaving spiders increase tension on the web in order to reduce the attenuation of the vibratory signal coming from the bottom part of the web. We support our claim by first building a detailed spider web model, which is tuned by a tension-adjusting algorithm to fit the experimentally observed profiles. Then, the effects of the spider weight and the web tension on the signal transmittance properties are investigated using state-of-the-art finite element analysis tools.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240986"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444776/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of spider's weight on signal transmittance in vertical orb webs.\",\"authors\":\"Koray Yavuz, A Mahy Soler, Ramón Zaera, Seymur Jahangirov\",\"doi\":\"10.1098/rsos.240986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spider orb web is a sophisticated structure that needs to fulfil multiple roles, such as trapping prey and transmitting web-borne signals. When building their web, heavier spiders tend to increase the pretension on the web, which seems counterintuitive since a tighter web would decrease the chances of stopping and retaining prey. In this article, we claim that heavier orb-weaving spiders increase tension on the web in order to reduce the attenuation of the vibratory signal coming from the bottom part of the web. We support our claim by first building a detailed spider web model, which is tuned by a tension-adjusting algorithm to fit the experimentally observed profiles. Then, the effects of the spider weight and the web tension on the signal transmittance properties are investigated using state-of-the-art finite element analysis tools.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 10\",\"pages\":\"240986\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444776/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240986\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240986","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effect of spider's weight on signal transmittance in vertical orb webs.
Spider orb web is a sophisticated structure that needs to fulfil multiple roles, such as trapping prey and transmitting web-borne signals. When building their web, heavier spiders tend to increase the pretension on the web, which seems counterintuitive since a tighter web would decrease the chances of stopping and retaining prey. In this article, we claim that heavier orb-weaving spiders increase tension on the web in order to reduce the attenuation of the vibratory signal coming from the bottom part of the web. We support our claim by first building a detailed spider web model, which is tuned by a tension-adjusting algorithm to fit the experimentally observed profiles. Then, the effects of the spider weight and the web tension on the signal transmittance properties are investigated using state-of-the-art finite element analysis tools.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.