用于动态太赫兹波调制的可调谐晶格诱导透明超表面。

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2024-10-01 DOI:10.1364/OL.533173
Wenpeng Guo, Yu Wang, Peng Tan, Guanchao Wang, Zhenghao Li, Chenxiang Liu, Xingkai Che, Li Li, Hao Tian
{"title":"用于动态太赫兹波调制的可调谐晶格诱导透明超表面。","authors":"Wenpeng Guo, Yu Wang, Peng Tan, Guanchao Wang, Zhenghao Li, Chenxiang Liu, Xingkai Che, Li Li, Hao Tian","doi":"10.1364/OL.533173","DOIUrl":null,"url":null,"abstract":"<p><p>Tunable metasurfaces offer a promising avenue for dynamically modulating terahertz waves. Phase-change materials are crucial in this dynamic modulation, enabling precise and reversible control over the electromagnetic properties of the metasurfaces. In this study, we designed and experimentally fabricated a tunable lattice-induced transparent metasurface. This metasurface comprises two gold rod resonators exhibiting different periodic distributions, each supporting an electric dipole resonance at 2.03 THz and a surface lattice resonance at 1.51 THz, respectively. By combining these structures, we realize lattice-induced transparency. Simulation results show that the phase change of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> modulates these resonances, with the crystalline state significantly weakening their resonance strength intensity. The maximum modulation depth of the lattice-induced transparency peak can reach 44.4%. Experimental results of laser-induced GST phase changes confirm a modulation depth of 42.4%. This innovative metasurface design holds promise for applications in terahertz communication systems.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 19","pages":"5407-5410"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable lattice-induced transparent metasurface for dynamic terahertz wave modulation.\",\"authors\":\"Wenpeng Guo, Yu Wang, Peng Tan, Guanchao Wang, Zhenghao Li, Chenxiang Liu, Xingkai Che, Li Li, Hao Tian\",\"doi\":\"10.1364/OL.533173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tunable metasurfaces offer a promising avenue for dynamically modulating terahertz waves. Phase-change materials are crucial in this dynamic modulation, enabling precise and reversible control over the electromagnetic properties of the metasurfaces. In this study, we designed and experimentally fabricated a tunable lattice-induced transparent metasurface. This metasurface comprises two gold rod resonators exhibiting different periodic distributions, each supporting an electric dipole resonance at 2.03 THz and a surface lattice resonance at 1.51 THz, respectively. By combining these structures, we realize lattice-induced transparency. Simulation results show that the phase change of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> modulates these resonances, with the crystalline state significantly weakening their resonance strength intensity. The maximum modulation depth of the lattice-induced transparency peak can reach 44.4%. Experimental results of laser-induced GST phase changes confirm a modulation depth of 42.4%. This innovative metasurface design holds promise for applications in terahertz communication systems.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 19\",\"pages\":\"5407-5410\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.533173\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.533173","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

可调谐超表面为动态调制太赫兹波提供了一条前景广阔的途径。相变材料在这种动态调制中至关重要,可实现对元表面电磁特性的精确和可逆控制。在这项研究中,我们设计并通过实验制造了一种可调晶格诱导透明元表面。该元表面由两个表现出不同周期分布的金棒谐振器组成,每个谐振器分别支持 2.03 太赫兹的电偶极子共振和 1.51 太赫兹的表面晶格共振。通过组合这些结构,我们实现了晶格诱导透明。模拟结果表明,Ge2Sb2Te5 的相变会调制这些共振,结晶态会显著削弱它们的共振强度。晶格诱导透明度峰值的最大调制深度可达 44.4%。激光诱导 GST 相变的实验结果证实,调制深度为 42.4%。这种创新的元表面设计有望应用于太赫兹通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable lattice-induced transparent metasurface for dynamic terahertz wave modulation.

Tunable metasurfaces offer a promising avenue for dynamically modulating terahertz waves. Phase-change materials are crucial in this dynamic modulation, enabling precise and reversible control over the electromagnetic properties of the metasurfaces. In this study, we designed and experimentally fabricated a tunable lattice-induced transparent metasurface. This metasurface comprises two gold rod resonators exhibiting different periodic distributions, each supporting an electric dipole resonance at 2.03 THz and a surface lattice resonance at 1.51 THz, respectively. By combining these structures, we realize lattice-induced transparency. Simulation results show that the phase change of Ge2Sb2Te5 modulates these resonances, with the crystalline state significantly weakening their resonance strength intensity. The maximum modulation depth of the lattice-induced transparency peak can reach 44.4%. Experimental results of laser-induced GST phase changes confirm a modulation depth of 42.4%. This innovative metasurface design holds promise for applications in terahertz communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信