Taihua Yang , Linjie Gao , Quansheng Liu , Bin Liu , Yuan Zhou , Peng Li
{"title":"模拟强化地热系统热交换效果的 FDEM-CFD 耦合方法--开挖","authors":"Taihua Yang , Linjie Gao , Quansheng Liu , Bin Liu , Yuan Zhou , Peng Li","doi":"10.1016/j.enganabound.2024.105980","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately assessing the impact of hydraulic fracturing technology on the heat exchange efficiency of Enhanced Geothermal Systems (EGS-E) is crucial. This paper proposes a coupled FDEM-CFD method to predict the heat exchange efficiency of EGS-E systems. Firstly, the FDEM method was adopted to establish a numerical model for EGS-E horizontal roadways. The physical process of fracture initiation, propagation, and the eventual formation of a coherent fracture network within intact rock mass were numerically studied. Subsequently, combined with CFD method, the flow and heat exchange processes between cold water and rock in horizontal roadway were investigated. The effects of hydraulic fracturing technology on the heat exchange efficiency of EGS-E project were comprehensively studied by comparing the water-rock heat exchange efficiency before and after fracturing. The results show that, hydraulic fracturing can increase the water-rock heat exchange area by 1385.5710 %, and the temperature difference between inlet and outlet increases by 8.3365 %. It shows that hydraulic fracturing improves the heat exchange efficiency of EGS-E.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105980"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coupled FDEM-CFD method for modelling heat exchange effectiveness in enhanced geothermal systems-excavation\",\"authors\":\"Taihua Yang , Linjie Gao , Quansheng Liu , Bin Liu , Yuan Zhou , Peng Li\",\"doi\":\"10.1016/j.enganabound.2024.105980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately assessing the impact of hydraulic fracturing technology on the heat exchange efficiency of Enhanced Geothermal Systems (EGS-E) is crucial. This paper proposes a coupled FDEM-CFD method to predict the heat exchange efficiency of EGS-E systems. Firstly, the FDEM method was adopted to establish a numerical model for EGS-E horizontal roadways. The physical process of fracture initiation, propagation, and the eventual formation of a coherent fracture network within intact rock mass were numerically studied. Subsequently, combined with CFD method, the flow and heat exchange processes between cold water and rock in horizontal roadway were investigated. The effects of hydraulic fracturing technology on the heat exchange efficiency of EGS-E project were comprehensively studied by comparing the water-rock heat exchange efficiency before and after fracturing. The results show that, hydraulic fracturing can increase the water-rock heat exchange area by 1385.5710 %, and the temperature difference between inlet and outlet increases by 8.3365 %. It shows that hydraulic fracturing improves the heat exchange efficiency of EGS-E.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"169 \",\"pages\":\"Article 105980\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724004533\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A coupled FDEM-CFD method for modelling heat exchange effectiveness in enhanced geothermal systems-excavation
Accurately assessing the impact of hydraulic fracturing technology on the heat exchange efficiency of Enhanced Geothermal Systems (EGS-E) is crucial. This paper proposes a coupled FDEM-CFD method to predict the heat exchange efficiency of EGS-E systems. Firstly, the FDEM method was adopted to establish a numerical model for EGS-E horizontal roadways. The physical process of fracture initiation, propagation, and the eventual formation of a coherent fracture network within intact rock mass were numerically studied. Subsequently, combined with CFD method, the flow and heat exchange processes between cold water and rock in horizontal roadway were investigated. The effects of hydraulic fracturing technology on the heat exchange efficiency of EGS-E project were comprehensively studied by comparing the water-rock heat exchange efficiency before and after fracturing. The results show that, hydraulic fracturing can increase the water-rock heat exchange area by 1385.5710 %, and the temperature difference between inlet and outlet increases by 8.3365 %. It shows that hydraulic fracturing improves the heat exchange efficiency of EGS-E.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.