Ioana Zdru, Florin Ciubotaru, Claudia Nastase, Andrei Florescu, Alexandre Abbass Hamadeh, Moritz Geilen, Alexandra Nicoloiu, George Boldeiu, Dan Vasilache, Sergiu Iordanescu, Life Monica Nedelcu, Daniele Narducci, Mihaela-Cristina Ciornei, Christoph Adelmann, Adrian Dinescu, Mathias Weiler, Philipp Pirro, Alexandru Muller
{"title":"利用工作频率为 GHz、IDT 间有镍/镍铁硅层的 GaN/Si 声表面波器件实现声波与自旋波的相互作用。","authors":"Ioana Zdru, Florin Ciubotaru, Claudia Nastase, Andrei Florescu, Alexandre Abbass Hamadeh, Moritz Geilen, Alexandra Nicoloiu, George Boldeiu, Dan Vasilache, Sergiu Iordanescu, Life Monica Nedelcu, Daniele Narducci, Mihaela-Cristina Ciornei, Christoph Adelmann, Adrian Dinescu, Mathias Weiler, Philipp Pirro, Alexandru Muller","doi":"10.1109/TUFFC.2024.3463731","DOIUrl":null,"url":null,"abstract":"<p><p>A two port surface acoustic wave (SAW) device was developed to be used for the control and excitation via spin waves (SW). The structure was manufactured using advanced nanolithography techniques, on GaN/Si, enabling fundamental Rayleigh interdigitated transducer (IDT) resonances in GHz frequency range. The ferromagnetic resonance of the magnetostrictive Ni/NiFeSi layer placed between the IDTs of the SAW device can be tuned to the SAW resonance frequency by magnetic fields. Using structures with finger and interdigit spacing of 170 nm and 100 nm, fundamental Rayleigh IDT resonance frequencies of 6.4 and 10.4 GHz have been obtained. Coupling of SAW to SW was demonstrated through transmission measurements at the fundamental Rayleigh frequencies in a magnetic field, μ0H from -280 to +280 mT, at different angles (θ) between the SAW propagation direction and the magnetic field direction. For the 6.4 GHz resonator a maximum decrease of about 1.2 dB occurred in |S21|, at μ0H = 30 mT and at θ = 45. Time-gated processing of the frequency domain raw data was used to remove the direct electromagnetic cross talk and triple transit effects. Nonreciprocity associated to the coupling was analyzed for the two SAW structures. The quantitative influence of the magnetic field strength on the phase of the transmission parameters is also presented.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of acoustic waves with spin waves using a GHz operating GaN/Si SAW device with a Ni/NiFeSi layer between its IDTs.\",\"authors\":\"Ioana Zdru, Florin Ciubotaru, Claudia Nastase, Andrei Florescu, Alexandre Abbass Hamadeh, Moritz Geilen, Alexandra Nicoloiu, George Boldeiu, Dan Vasilache, Sergiu Iordanescu, Life Monica Nedelcu, Daniele Narducci, Mihaela-Cristina Ciornei, Christoph Adelmann, Adrian Dinescu, Mathias Weiler, Philipp Pirro, Alexandru Muller\",\"doi\":\"10.1109/TUFFC.2024.3463731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A two port surface acoustic wave (SAW) device was developed to be used for the control and excitation via spin waves (SW). The structure was manufactured using advanced nanolithography techniques, on GaN/Si, enabling fundamental Rayleigh interdigitated transducer (IDT) resonances in GHz frequency range. The ferromagnetic resonance of the magnetostrictive Ni/NiFeSi layer placed between the IDTs of the SAW device can be tuned to the SAW resonance frequency by magnetic fields. Using structures with finger and interdigit spacing of 170 nm and 100 nm, fundamental Rayleigh IDT resonance frequencies of 6.4 and 10.4 GHz have been obtained. Coupling of SAW to SW was demonstrated through transmission measurements at the fundamental Rayleigh frequencies in a magnetic field, μ0H from -280 to +280 mT, at different angles (θ) between the SAW propagation direction and the magnetic field direction. For the 6.4 GHz resonator a maximum decrease of about 1.2 dB occurred in |S21|, at μ0H = 30 mT and at θ = 45. Time-gated processing of the frequency domain raw data was used to remove the direct electromagnetic cross talk and triple transit effects. Nonreciprocity associated to the coupling was analyzed for the two SAW structures. The quantitative influence of the magnetic field strength on the phase of the transmission parameters is also presented.</p>\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TUFFC.2024.3463731\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2024.3463731","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Interaction of acoustic waves with spin waves using a GHz operating GaN/Si SAW device with a Ni/NiFeSi layer between its IDTs.
A two port surface acoustic wave (SAW) device was developed to be used for the control and excitation via spin waves (SW). The structure was manufactured using advanced nanolithography techniques, on GaN/Si, enabling fundamental Rayleigh interdigitated transducer (IDT) resonances in GHz frequency range. The ferromagnetic resonance of the magnetostrictive Ni/NiFeSi layer placed between the IDTs of the SAW device can be tuned to the SAW resonance frequency by magnetic fields. Using structures with finger and interdigit spacing of 170 nm and 100 nm, fundamental Rayleigh IDT resonance frequencies of 6.4 and 10.4 GHz have been obtained. Coupling of SAW to SW was demonstrated through transmission measurements at the fundamental Rayleigh frequencies in a magnetic field, μ0H from -280 to +280 mT, at different angles (θ) between the SAW propagation direction and the magnetic field direction. For the 6.4 GHz resonator a maximum decrease of about 1.2 dB occurred in |S21|, at μ0H = 30 mT and at θ = 45. Time-gated processing of the frequency domain raw data was used to remove the direct electromagnetic cross talk and triple transit effects. Nonreciprocity associated to the coupling was analyzed for the two SAW structures. The quantitative influence of the magnetic field strength on the phase of the transmission parameters is also presented.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.