Christopher Martínez López, Florianne Castillo-Borja
{"title":"亲水性吸附剂上 Al3+ 离子与水的界面动力学:分子动力学研究","authors":"Christopher Martínez López, Florianne Castillo-Borja","doi":"10.1016/j.micromeso.2024.113349","DOIUrl":null,"url":null,"abstract":"<div><div>The residues generated from the anodizing industry contain metallic ions like Al<sup>3+</sup>, and the presence of these pollutants in water bodies cause serious concern because of the ecological and human health risks. The adsorption of heavy metal ions is a widely used option due to it is an easy to implement, eco-friendly, and cost-effective process. This work reports the effect of different surfaces on the adsorption process of Al<sup>3+</sup> ions to clarify the adsorption mechanism of the ions using molecular dynamics simulations. The models of three adsorbents: hydroxyapatite (HAP), an activated carbon (AC), and clinoptilolite (CLI) were computationally investigated to identify the most suitable adsorbent. The calculated adsorption isotherms allowed the evaluation of three different adsorbent materials for the removal of Al<sup>3+</sup> ions from an aqueous solution. The findings were compared with experimental data of Al<sup>3+</sup> adsorption onto bone char and a good qualitative similarity with experimental data was obtained for the HAP model. The results obtained by simulation as well as the experimental data fit satisfactorily to the Freundlich model, the fitting parameters show differences less than 3 % between the simulated and experimental data. For the three adsorbents, the simulated data fit better to the Freundlich isotherm adsorption model, suggesting heterogeneous adsorption on surfaces with variable adsorption capacity in each case. To study the adsorption mechanism, density profiles, RDFs, number of H-bonds, molecular minimum distances and intermolecular interactions were calculated. The efficiency of Al<sup>3+</sup> ion adsorption is strongly influenced by the hydrophilic or amphiphilic nature of the adsorbent surface, as well as by the solvation structure of the ions in the solution. In each system, the solvation phenomenon occurs, although only the AC adsorbent exhibits it to a lesser extent compared to CLI and HAP surfaces. The CLI model had the highest adsorption capacity, due to its intense hydrophilic behavior, which leads to greater affinity and stability in the water molecules adsorbed on its surface and, therefore, allows a greater adsorption of Al<sup>3+</sup> ions.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113349"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial dynamics of Al3+ ions and water on hydrophilic adsorbents: A molecular dynamics study\",\"authors\":\"Christopher Martínez López, Florianne Castillo-Borja\",\"doi\":\"10.1016/j.micromeso.2024.113349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The residues generated from the anodizing industry contain metallic ions like Al<sup>3+</sup>, and the presence of these pollutants in water bodies cause serious concern because of the ecological and human health risks. The adsorption of heavy metal ions is a widely used option due to it is an easy to implement, eco-friendly, and cost-effective process. This work reports the effect of different surfaces on the adsorption process of Al<sup>3+</sup> ions to clarify the adsorption mechanism of the ions using molecular dynamics simulations. The models of three adsorbents: hydroxyapatite (HAP), an activated carbon (AC), and clinoptilolite (CLI) were computationally investigated to identify the most suitable adsorbent. The calculated adsorption isotherms allowed the evaluation of three different adsorbent materials for the removal of Al<sup>3+</sup> ions from an aqueous solution. The findings were compared with experimental data of Al<sup>3+</sup> adsorption onto bone char and a good qualitative similarity with experimental data was obtained for the HAP model. The results obtained by simulation as well as the experimental data fit satisfactorily to the Freundlich model, the fitting parameters show differences less than 3 % between the simulated and experimental data. For the three adsorbents, the simulated data fit better to the Freundlich isotherm adsorption model, suggesting heterogeneous adsorption on surfaces with variable adsorption capacity in each case. To study the adsorption mechanism, density profiles, RDFs, number of H-bonds, molecular minimum distances and intermolecular interactions were calculated. The efficiency of Al<sup>3+</sup> ion adsorption is strongly influenced by the hydrophilic or amphiphilic nature of the adsorbent surface, as well as by the solvation structure of the ions in the solution. In each system, the solvation phenomenon occurs, although only the AC adsorbent exhibits it to a lesser extent compared to CLI and HAP surfaces. The CLI model had the highest adsorption capacity, due to its intense hydrophilic behavior, which leads to greater affinity and stability in the water molecules adsorbed on its surface and, therefore, allows a greater adsorption of Al<sup>3+</sup> ions.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"381 \",\"pages\":\"Article 113349\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003718\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003718","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Interfacial dynamics of Al3+ ions and water on hydrophilic adsorbents: A molecular dynamics study
The residues generated from the anodizing industry contain metallic ions like Al3+, and the presence of these pollutants in water bodies cause serious concern because of the ecological and human health risks. The adsorption of heavy metal ions is a widely used option due to it is an easy to implement, eco-friendly, and cost-effective process. This work reports the effect of different surfaces on the adsorption process of Al3+ ions to clarify the adsorption mechanism of the ions using molecular dynamics simulations. The models of three adsorbents: hydroxyapatite (HAP), an activated carbon (AC), and clinoptilolite (CLI) were computationally investigated to identify the most suitable adsorbent. The calculated adsorption isotherms allowed the evaluation of three different adsorbent materials for the removal of Al3+ ions from an aqueous solution. The findings were compared with experimental data of Al3+ adsorption onto bone char and a good qualitative similarity with experimental data was obtained for the HAP model. The results obtained by simulation as well as the experimental data fit satisfactorily to the Freundlich model, the fitting parameters show differences less than 3 % between the simulated and experimental data. For the three adsorbents, the simulated data fit better to the Freundlich isotherm adsorption model, suggesting heterogeneous adsorption on surfaces with variable adsorption capacity in each case. To study the adsorption mechanism, density profiles, RDFs, number of H-bonds, molecular minimum distances and intermolecular interactions were calculated. The efficiency of Al3+ ion adsorption is strongly influenced by the hydrophilic or amphiphilic nature of the adsorbent surface, as well as by the solvation structure of the ions in the solution. In each system, the solvation phenomenon occurs, although only the AC adsorbent exhibits it to a lesser extent compared to CLI and HAP surfaces. The CLI model had the highest adsorption capacity, due to its intense hydrophilic behavior, which leads to greater affinity and stability in the water molecules adsorbed on its surface and, therefore, allows a greater adsorption of Al3+ ions.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.