Anthony Herrel, Jean-Christophe Theil, Léon Faure, François Druelle, Gilles Berillon
{"title":"两种狒狒(Papio anubis 和 P. papio)后肢肌肉与年龄和体型有关的变化。","authors":"Anthony Herrel, Jean-Christophe Theil, Léon Faure, François Druelle, Gilles Berillon","doi":"10.1111/joa.14140","DOIUrl":null,"url":null,"abstract":"<p><p>Body size has an impact on all biological functions and analyzing how body size impacts functional traits such as locomotion is critical. Body size does not only vary across species but also during ontogeny. Indeed, juvenile animals are often at a competitive disadvantage due to their smaller absolute size. Consequently, understanding size- and age-related changes in the locomotor system is critical for our understanding of adult phenotypes. Here, we address this question by exploring growth of the hind limb muscles in two species of closely related baboons that differ in their ecology, the olive baboon, Papio Anubis, the Guinea baboon, and Papio papio. To do so, we dissected 40 P. anubis and 10 P. papio and measured the mass and physiological cross-sectional area (PCSA) of the hind limb muscles. Our results showed no sexual differences in size- or age-related growth patterns, but did show differences between species. Whereas the scaling of muscle mass and PCSA was largely isometric in P. anubis, allometric scaling was more common in P. papio. Despite these differences between species, the knee extensors and external rotators at the knee scaled with positive allometry in both species highlighting their important role during adult locomotion. Although life-history data for P. papio are scarce, we suggest that differences between species may be associated with differences in adult body size and age of locomotor independence between species.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age- and size-related changes in hind limb muscles in two baboon species (Papio anubis and P. papio).\",\"authors\":\"Anthony Herrel, Jean-Christophe Theil, Léon Faure, François Druelle, Gilles Berillon\",\"doi\":\"10.1111/joa.14140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body size has an impact on all biological functions and analyzing how body size impacts functional traits such as locomotion is critical. Body size does not only vary across species but also during ontogeny. Indeed, juvenile animals are often at a competitive disadvantage due to their smaller absolute size. Consequently, understanding size- and age-related changes in the locomotor system is critical for our understanding of adult phenotypes. Here, we address this question by exploring growth of the hind limb muscles in two species of closely related baboons that differ in their ecology, the olive baboon, Papio Anubis, the Guinea baboon, and Papio papio. To do so, we dissected 40 P. anubis and 10 P. papio and measured the mass and physiological cross-sectional area (PCSA) of the hind limb muscles. Our results showed no sexual differences in size- or age-related growth patterns, but did show differences between species. Whereas the scaling of muscle mass and PCSA was largely isometric in P. anubis, allometric scaling was more common in P. papio. Despite these differences between species, the knee extensors and external rotators at the knee scaled with positive allometry in both species highlighting their important role during adult locomotion. Although life-history data for P. papio are scarce, we suggest that differences between species may be associated with differences in adult body size and age of locomotor independence between species.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14140\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14140","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Age- and size-related changes in hind limb muscles in two baboon species (Papio anubis and P. papio).
Body size has an impact on all biological functions and analyzing how body size impacts functional traits such as locomotion is critical. Body size does not only vary across species but also during ontogeny. Indeed, juvenile animals are often at a competitive disadvantage due to their smaller absolute size. Consequently, understanding size- and age-related changes in the locomotor system is critical for our understanding of adult phenotypes. Here, we address this question by exploring growth of the hind limb muscles in two species of closely related baboons that differ in their ecology, the olive baboon, Papio Anubis, the Guinea baboon, and Papio papio. To do so, we dissected 40 P. anubis and 10 P. papio and measured the mass and physiological cross-sectional area (PCSA) of the hind limb muscles. Our results showed no sexual differences in size- or age-related growth patterns, but did show differences between species. Whereas the scaling of muscle mass and PCSA was largely isometric in P. anubis, allometric scaling was more common in P. papio. Despite these differences between species, the knee extensors and external rotators at the knee scaled with positive allometry in both species highlighting their important role during adult locomotion. Although life-history data for P. papio are scarce, we suggest that differences between species may be associated with differences in adult body size and age of locomotor independence between species.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.