{"title":"探索与脑内出血基因相关的环境感官的因果效应和潜在中介机制。","authors":"Yaolou Wang, Yingjie Shen, Jinru Shen, Zhaoxin Fan, Jie Zhang, Jiaxin Zhou, Hui Lv, Wei Ma, Hongsheng Liang","doi":"10.1093/cercor/bhae377","DOIUrl":null,"url":null,"abstract":"<p><p>The occurrence mechanism of intracerebral hemorrhage remains unclear. Several recent studies have highlighted the close relationship between environmental senses and intracerebral hemorrhage, but the mechanisms of causal mediation are inconclusive. We aimed to investigate the causal relationships and potential mechanisms between environmental senses and intracerebral hemorrhage. Multiple Mendelian randomization methods were used to identify a causal relationship between environmental senses and intracerebral hemorrhage. Gut microbiota and brain imaging phenotypes were used to find possible mediators. Enrichment and molecular interaction analyses were used to identify potential mediators and molecular targets. No causal relationship between temperature and visual perception with intracerebral hemorrhage was found, whereas long-term noise was identified as a risk factor for intracerebral hemorrhage (OR 2.95, 95% CI: 1.25 to 6.93, PIVW = 0.01). The gut microbiota belonging to the class Negativicutes and the order Selenomonadales and the brain image-derived phenotypes ICA100 node 54, edge 803, edge 1149, and edge 1323 played mediating roles. \"Regulation of signaling and function in synaptic organization\" is the primary biological pathway of noise-induced intracerebral hemorrhage, and ARHGAP22 may be the critical gene. This study emphasized the importance of environmental noise in the prevention, disease management, and underlying biological mechanisms of intracerebral hemorrhage.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring causal effects and potential mediating mechanisms of genetically linked environmental senses with intracerebral hemorrhage.\",\"authors\":\"Yaolou Wang, Yingjie Shen, Jinru Shen, Zhaoxin Fan, Jie Zhang, Jiaxin Zhou, Hui Lv, Wei Ma, Hongsheng Liang\",\"doi\":\"10.1093/cercor/bhae377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The occurrence mechanism of intracerebral hemorrhage remains unclear. Several recent studies have highlighted the close relationship between environmental senses and intracerebral hemorrhage, but the mechanisms of causal mediation are inconclusive. We aimed to investigate the causal relationships and potential mechanisms between environmental senses and intracerebral hemorrhage. Multiple Mendelian randomization methods were used to identify a causal relationship between environmental senses and intracerebral hemorrhage. Gut microbiota and brain imaging phenotypes were used to find possible mediators. Enrichment and molecular interaction analyses were used to identify potential mediators and molecular targets. No causal relationship between temperature and visual perception with intracerebral hemorrhage was found, whereas long-term noise was identified as a risk factor for intracerebral hemorrhage (OR 2.95, 95% CI: 1.25 to 6.93, PIVW = 0.01). The gut microbiota belonging to the class Negativicutes and the order Selenomonadales and the brain image-derived phenotypes ICA100 node 54, edge 803, edge 1149, and edge 1323 played mediating roles. \\\"Regulation of signaling and function in synaptic organization\\\" is the primary biological pathway of noise-induced intracerebral hemorrhage, and ARHGAP22 may be the critical gene. This study emphasized the importance of environmental noise in the prevention, disease management, and underlying biological mechanisms of intracerebral hemorrhage.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhae377\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae377","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Exploring causal effects and potential mediating mechanisms of genetically linked environmental senses with intracerebral hemorrhage.
The occurrence mechanism of intracerebral hemorrhage remains unclear. Several recent studies have highlighted the close relationship between environmental senses and intracerebral hemorrhage, but the mechanisms of causal mediation are inconclusive. We aimed to investigate the causal relationships and potential mechanisms between environmental senses and intracerebral hemorrhage. Multiple Mendelian randomization methods were used to identify a causal relationship between environmental senses and intracerebral hemorrhage. Gut microbiota and brain imaging phenotypes were used to find possible mediators. Enrichment and molecular interaction analyses were used to identify potential mediators and molecular targets. No causal relationship between temperature and visual perception with intracerebral hemorrhage was found, whereas long-term noise was identified as a risk factor for intracerebral hemorrhage (OR 2.95, 95% CI: 1.25 to 6.93, PIVW = 0.01). The gut microbiota belonging to the class Negativicutes and the order Selenomonadales and the brain image-derived phenotypes ICA100 node 54, edge 803, edge 1149, and edge 1323 played mediating roles. "Regulation of signaling and function in synaptic organization" is the primary biological pathway of noise-induced intracerebral hemorrhage, and ARHGAP22 may be the critical gene. This study emphasized the importance of environmental noise in the prevention, disease management, and underlying biological mechanisms of intracerebral hemorrhage.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.