Shigekuni Okumura, Sayuki Oka, Takako Sasaki, Marion A Cooley, Yuko Hidaka, Hana Inoue, Hitoshi Nishijima, Shin-Ichiro Ohno, Shota Tanifuji, Mari Kaneko, Takaya Abe, Masahiko Kuroda, Tadashi Yokosuka, Richard M Breyer, Hiroshi Homma, Yuko Kato, Utako Yokoyama
{"title":"EP4-纤维素-1的时空表达与血管内膜增生有关","authors":"Shigekuni Okumura, Sayuki Oka, Takako Sasaki, Marion A Cooley, Yuko Hidaka, Hana Inoue, Hitoshi Nishijima, Shin-Ichiro Ohno, Shota Tanifuji, Mari Kaneko, Takaya Abe, Masahiko Kuroda, Tadashi Yokosuka, Richard M Breyer, Hiroshi Homma, Yuko Kato, Utako Yokoyama","doi":"10.1093/cvr/cvae211","DOIUrl":null,"url":null,"abstract":"Aims Cyclooxygenase-2–derived prostaglandin E2 (PGE2) is thought to promote vascular intimal hyperplasia (IH). It has been reported that the PGE2 receptor EP4 is upregulated in injured vessels, and that EP4 signaling in vascular smooth muscle cells (VSMCs) promotes IH. In contrast, EP4 in endothelial cells has been demonstrated to restrain IH. We aimed to investigate spatiotemporal expression of EP4 and whether modulating EP4 signaling could be a viable therapeutic strategy. Methods and Results We generated EP4 reporter mice (Ptger4-IRES-nlsLacZ) and found temporary but prominent EP4 expression in VSMCs of the proliferative neointima 2 weeks after femoral artery wire injury. Injury-induced IH was diminished in VSMC-targeted EP4 heterozygous deficient mice (Ptger4fl/+; SM22-Cre) 2 and 4 weeks after vascular injury compared to that in SM22-Cre, whereas injury-induced IH was exacerbated in VSMC-targeted EP4-overexpressing mice (Ptger4-Tg) compared to controls (non-Tg). We then investigated the downstream signaling of EP4 in VSMCs. Stimulation of EP4 increased mRNA and protein levels of the glycoprotein fibulin-1 in Ptger4-Tg VSMCs. Fibulin-1C recombinant proteins increased VSMC proliferation and migration through transforming growth factor (TGF)-β/Smad3, and EP4-mediated proliferation and migration were attenuated in Fbln1fl/fl; SM22-Cre VSMCs and in CRISPR/Cas9-mediated Fbln1 knockdown in Ptger4-Tg VSMCs. We generated multiple deletion mutants of fibulin-1C and found that EGF-like modules 6-8 appear to be involved in fibulin-1–mediated proliferation. Among binding partners of fibulin-1, extracellular matrix protein 1 (ECM1) was also upregulated by EP4 stimulation, and fibulin-1C and ECM1 proteins additively enhanced VSMC proliferation and migration. Injury-induced IH was attenuated in VSMC-targeted fibulin-1 deletion mice (Fbln1fl/fl; SM22-Cre) compared to Fbln1fl/fl. Furthermore, systemic EP4 antagonist administration reduced injury-induced IH in wild-type mice. Conclusions EP4 was upregulated in VSMCs of proliferative IH, and EP4 signaling promoted IH, at least in part through fibulin-1. An EP4 antagonist might be considered as a therapeutic strategy for IH.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"22 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal EP4–fibulin-1 expression is associated with vascular intimal hyperplasia\",\"authors\":\"Shigekuni Okumura, Sayuki Oka, Takako Sasaki, Marion A Cooley, Yuko Hidaka, Hana Inoue, Hitoshi Nishijima, Shin-Ichiro Ohno, Shota Tanifuji, Mari Kaneko, Takaya Abe, Masahiko Kuroda, Tadashi Yokosuka, Richard M Breyer, Hiroshi Homma, Yuko Kato, Utako Yokoyama\",\"doi\":\"10.1093/cvr/cvae211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aims Cyclooxygenase-2–derived prostaglandin E2 (PGE2) is thought to promote vascular intimal hyperplasia (IH). It has been reported that the PGE2 receptor EP4 is upregulated in injured vessels, and that EP4 signaling in vascular smooth muscle cells (VSMCs) promotes IH. In contrast, EP4 in endothelial cells has been demonstrated to restrain IH. We aimed to investigate spatiotemporal expression of EP4 and whether modulating EP4 signaling could be a viable therapeutic strategy. Methods and Results We generated EP4 reporter mice (Ptger4-IRES-nlsLacZ) and found temporary but prominent EP4 expression in VSMCs of the proliferative neointima 2 weeks after femoral artery wire injury. Injury-induced IH was diminished in VSMC-targeted EP4 heterozygous deficient mice (Ptger4fl/+; SM22-Cre) 2 and 4 weeks after vascular injury compared to that in SM22-Cre, whereas injury-induced IH was exacerbated in VSMC-targeted EP4-overexpressing mice (Ptger4-Tg) compared to controls (non-Tg). We then investigated the downstream signaling of EP4 in VSMCs. Stimulation of EP4 increased mRNA and protein levels of the glycoprotein fibulin-1 in Ptger4-Tg VSMCs. Fibulin-1C recombinant proteins increased VSMC proliferation and migration through transforming growth factor (TGF)-β/Smad3, and EP4-mediated proliferation and migration were attenuated in Fbln1fl/fl; SM22-Cre VSMCs and in CRISPR/Cas9-mediated Fbln1 knockdown in Ptger4-Tg VSMCs. We generated multiple deletion mutants of fibulin-1C and found that EGF-like modules 6-8 appear to be involved in fibulin-1–mediated proliferation. Among binding partners of fibulin-1, extracellular matrix protein 1 (ECM1) was also upregulated by EP4 stimulation, and fibulin-1C and ECM1 proteins additively enhanced VSMC proliferation and migration. Injury-induced IH was attenuated in VSMC-targeted fibulin-1 deletion mice (Fbln1fl/fl; SM22-Cre) compared to Fbln1fl/fl. Furthermore, systemic EP4 antagonist administration reduced injury-induced IH in wild-type mice. Conclusions EP4 was upregulated in VSMCs of proliferative IH, and EP4 signaling promoted IH, at least in part through fibulin-1. An EP4 antagonist might be considered as a therapeutic strategy for IH.\",\"PeriodicalId\":9638,\"journal\":{\"name\":\"Cardiovascular Research\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cvr/cvae211\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae211","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Spatiotemporal EP4–fibulin-1 expression is associated with vascular intimal hyperplasia
Aims Cyclooxygenase-2–derived prostaglandin E2 (PGE2) is thought to promote vascular intimal hyperplasia (IH). It has been reported that the PGE2 receptor EP4 is upregulated in injured vessels, and that EP4 signaling in vascular smooth muscle cells (VSMCs) promotes IH. In contrast, EP4 in endothelial cells has been demonstrated to restrain IH. We aimed to investigate spatiotemporal expression of EP4 and whether modulating EP4 signaling could be a viable therapeutic strategy. Methods and Results We generated EP4 reporter mice (Ptger4-IRES-nlsLacZ) and found temporary but prominent EP4 expression in VSMCs of the proliferative neointima 2 weeks after femoral artery wire injury. Injury-induced IH was diminished in VSMC-targeted EP4 heterozygous deficient mice (Ptger4fl/+; SM22-Cre) 2 and 4 weeks after vascular injury compared to that in SM22-Cre, whereas injury-induced IH was exacerbated in VSMC-targeted EP4-overexpressing mice (Ptger4-Tg) compared to controls (non-Tg). We then investigated the downstream signaling of EP4 in VSMCs. Stimulation of EP4 increased mRNA and protein levels of the glycoprotein fibulin-1 in Ptger4-Tg VSMCs. Fibulin-1C recombinant proteins increased VSMC proliferation and migration through transforming growth factor (TGF)-β/Smad3, and EP4-mediated proliferation and migration were attenuated in Fbln1fl/fl; SM22-Cre VSMCs and in CRISPR/Cas9-mediated Fbln1 knockdown in Ptger4-Tg VSMCs. We generated multiple deletion mutants of fibulin-1C and found that EGF-like modules 6-8 appear to be involved in fibulin-1–mediated proliferation. Among binding partners of fibulin-1, extracellular matrix protein 1 (ECM1) was also upregulated by EP4 stimulation, and fibulin-1C and ECM1 proteins additively enhanced VSMC proliferation and migration. Injury-induced IH was attenuated in VSMC-targeted fibulin-1 deletion mice (Fbln1fl/fl; SM22-Cre) compared to Fbln1fl/fl. Furthermore, systemic EP4 antagonist administration reduced injury-induced IH in wild-type mice. Conclusions EP4 was upregulated in VSMCs of proliferative IH, and EP4 signaling promoted IH, at least in part through fibulin-1. An EP4 antagonist might be considered as a therapeutic strategy for IH.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases