Xueming Yang , Yongfu Ma , Chang Ji , Zhijin Guo , Jianfei Xie
{"title":"氢约束对分子动力学模拟中碳氢化合物导热性预测的影响","authors":"Xueming Yang , Yongfu Ma , Chang Ji , Zhijin Guo , Jianfei Xie","doi":"10.1016/j.fluid.2024.114230","DOIUrl":null,"url":null,"abstract":"<div><p>Large overestimation has been reported while predicting the thermal conductivity of hydrocarbons using an all-atom force field model in molecular dynamics (MD) simulations. Although it has been guessed as resulting from the high-frequency vibration of the hydrogen atoms and hydrogen constraints method is suggested to be employed to reduce the deviation, how hydrogen constraints affect the heat conduction and local structure of hydrocarbons in MD simulation is still not fully understood. In this work, the effect of hydrogen constraints on the prediction of thermal conductivity of n-decane in MD simulations with the all-atom force field is studied. The results show that the deviation of the thermal conductivity of n-decane can be narrowed down by 72.48 % in simulations if the hydrogen constraints with a SHAKE algorithm is employed. The analysis of heat flux decomposition indicates that employing hydrogen constraints can reduce the contribution of transport term and non-bonded interactions to the heat flux, which in turn can help improve the accuracy while predicting the thermal conductivity in MD simulations. Furthermore, results of the vibrational density of states show that hydrogen constraints can dismiss the high-frequency vibration mode of molecules, thus effectively reducing the overestimation of thermal conductivity of hydrocarbon systems in MD simulations. The findings of this work sheds light on the molecular mechanism of heat transfer in hydrocarbon systems.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114230"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of hydrogen constraints on predicting thermal conductivity of hydrocarbons in molecular dynamics simulation\",\"authors\":\"Xueming Yang , Yongfu Ma , Chang Ji , Zhijin Guo , Jianfei Xie\",\"doi\":\"10.1016/j.fluid.2024.114230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large overestimation has been reported while predicting the thermal conductivity of hydrocarbons using an all-atom force field model in molecular dynamics (MD) simulations. Although it has been guessed as resulting from the high-frequency vibration of the hydrogen atoms and hydrogen constraints method is suggested to be employed to reduce the deviation, how hydrogen constraints affect the heat conduction and local structure of hydrocarbons in MD simulation is still not fully understood. In this work, the effect of hydrogen constraints on the prediction of thermal conductivity of n-decane in MD simulations with the all-atom force field is studied. The results show that the deviation of the thermal conductivity of n-decane can be narrowed down by 72.48 % in simulations if the hydrogen constraints with a SHAKE algorithm is employed. The analysis of heat flux decomposition indicates that employing hydrogen constraints can reduce the contribution of transport term and non-bonded interactions to the heat flux, which in turn can help improve the accuracy while predicting the thermal conductivity in MD simulations. Furthermore, results of the vibrational density of states show that hydrogen constraints can dismiss the high-frequency vibration mode of molecules, thus effectively reducing the overestimation of thermal conductivity of hydrocarbon systems in MD simulations. The findings of this work sheds light on the molecular mechanism of heat transfer in hydrocarbon systems.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"588 \",\"pages\":\"Article 114230\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838122400205X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122400205X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of hydrogen constraints on predicting thermal conductivity of hydrocarbons in molecular dynamics simulation
Large overestimation has been reported while predicting the thermal conductivity of hydrocarbons using an all-atom force field model in molecular dynamics (MD) simulations. Although it has been guessed as resulting from the high-frequency vibration of the hydrogen atoms and hydrogen constraints method is suggested to be employed to reduce the deviation, how hydrogen constraints affect the heat conduction and local structure of hydrocarbons in MD simulation is still not fully understood. In this work, the effect of hydrogen constraints on the prediction of thermal conductivity of n-decane in MD simulations with the all-atom force field is studied. The results show that the deviation of the thermal conductivity of n-decane can be narrowed down by 72.48 % in simulations if the hydrogen constraints with a SHAKE algorithm is employed. The analysis of heat flux decomposition indicates that employing hydrogen constraints can reduce the contribution of transport term and non-bonded interactions to the heat flux, which in turn can help improve the accuracy while predicting the thermal conductivity in MD simulations. Furthermore, results of the vibrational density of states show that hydrogen constraints can dismiss the high-frequency vibration mode of molecules, thus effectively reducing the overestimation of thermal conductivity of hydrocarbon systems in MD simulations. The findings of this work sheds light on the molecular mechanism of heat transfer in hydrocarbon systems.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.