通过超声波辅助磺化在聚醚醚酮(PEEK)表面制造宏微多孔结构

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
{"title":"通过超声波辅助磺化在聚醚醚酮(PEEK)表面制造宏微多孔结构","authors":"","doi":"10.1016/j.surfin.2024.105131","DOIUrl":null,"url":null,"abstract":"<div><p>A multiscale porous surface can significantly improve the osseointegration of biomedical implants, but it cannot be facilely achieved on the Poly-ether-ether-ketone (PEEK) surface. In this work, a macro-micro porous structure was prepared on the PEEK surface by ultrasound-assisted sulfonation. The surface morphologies, chemical compositions, functional groups, surface roughness, and wettability of the porous structures at different sulfonation times were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectrometer (FTIR), laser scanning confocal microscope (LSCM), and contact angle measurement, respectively. The results demonstrate that a macro-micro porous structure is formed on the PEEK surface, with macropore sizes ranging from 50 to 250 μm and micro-sized pore sizes ranging from 0.2 to 1.5 μm. Moreover, the results of in <em>vitro</em> cellular experiments demonstrate that the macro-micro porous structure can promote cell adhesion and proliferation of BMCSc. The formation mechanism of the multiscale porous structures has also been discussed. This novel approach may provide a simple and effective strategy for surface modification of PEEK to improve its mechanical and biological response.</p></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a macro-micro porous structure on PEEK surface by ultrasound-assisted sulfonation\",\"authors\":\"\",\"doi\":\"10.1016/j.surfin.2024.105131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A multiscale porous surface can significantly improve the osseointegration of biomedical implants, but it cannot be facilely achieved on the Poly-ether-ether-ketone (PEEK) surface. In this work, a macro-micro porous structure was prepared on the PEEK surface by ultrasound-assisted sulfonation. The surface morphologies, chemical compositions, functional groups, surface roughness, and wettability of the porous structures at different sulfonation times were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectrometer (FTIR), laser scanning confocal microscope (LSCM), and contact angle measurement, respectively. The results demonstrate that a macro-micro porous structure is formed on the PEEK surface, with macropore sizes ranging from 50 to 250 μm and micro-sized pore sizes ranging from 0.2 to 1.5 μm. Moreover, the results of in <em>vitro</em> cellular experiments demonstrate that the macro-micro porous structure can promote cell adhesion and proliferation of BMCSc. The formation mechanism of the multiscale porous structures has also been discussed. This novel approach may provide a simple and effective strategy for surface modification of PEEK to improve its mechanical and biological response.</p></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012872\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012872","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多尺度多孔表面能显著改善生物医学植入物的骨结合,但在聚醚醚酮(PEEK)表面却无法轻易实现。本研究通过超声辅助磺化法在 PEEK 表面制备了宏微多孔结构。分别采用扫描电子显微镜(SEM)、能量色散光谱(EDS)、傅立叶变换红外光谱仪(FTIR)、激光扫描共聚焦显微镜(LSCM)和接触角测量法对不同磺化时间下多孔结构的表面形貌、化学成分、官能团、表面粗糙度和润湿性进行了表征。结果表明,PEEK 表面形成了宏观-微观多孔结构,宏观孔径为 50 至 250 μm,微观孔径为 0.2 至 1.5 μm。此外,体外细胞实验结果表明,宏微孔结构能促进 BMCSc 的细胞粘附和增殖。此外,还讨论了多尺度多孔结构的形成机制。这种新方法可为聚醚醚酮的表面改性提供一种简单有效的策略,以改善其机械和生物反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of a macro-micro porous structure on PEEK surface by ultrasound-assisted sulfonation

Fabrication of a macro-micro porous structure on PEEK surface by ultrasound-assisted sulfonation

A multiscale porous surface can significantly improve the osseointegration of biomedical implants, but it cannot be facilely achieved on the Poly-ether-ether-ketone (PEEK) surface. In this work, a macro-micro porous structure was prepared on the PEEK surface by ultrasound-assisted sulfonation. The surface morphologies, chemical compositions, functional groups, surface roughness, and wettability of the porous structures at different sulfonation times were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectrometer (FTIR), laser scanning confocal microscope (LSCM), and contact angle measurement, respectively. The results demonstrate that a macro-micro porous structure is formed on the PEEK surface, with macropore sizes ranging from 50 to 250 μm and micro-sized pore sizes ranging from 0.2 to 1.5 μm. Moreover, the results of in vitro cellular experiments demonstrate that the macro-micro porous structure can promote cell adhesion and proliferation of BMCSc. The formation mechanism of the multiscale porous structures has also been discussed. This novel approach may provide a simple and effective strategy for surface modification of PEEK to improve its mechanical and biological response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信