Fábio Castelo Branco Fontes Paes Njaime, Renato Cesar Máspero, André de Souza Leandro, Rafael Maciel-de-Freitas
{"title":"埃及伊蚊和库蚊混合种群在野外条件下的自动分类","authors":"Fábio Castelo Branco Fontes Paes Njaime, Renato Cesar Máspero, André de Souza Leandro, Rafael Maciel-de-Freitas","doi":"10.1186/s13071-024-06417-z","DOIUrl":null,"url":null,"abstract":"The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"8 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated classification of mixed populations of Aedes aegypti and Culex quinquefasciatus mosquitoes under field conditions\",\"authors\":\"Fábio Castelo Branco Fontes Paes Njaime, Renato Cesar Máspero, André de Souza Leandro, Rafael Maciel-de-Freitas\",\"doi\":\"10.1186/s13071-024-06417-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species. \",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-024-06417-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06417-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Automated classification of mixed populations of Aedes aegypti and Culex quinquefasciatus mosquitoes under field conditions
The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.