Junwen Che, Hong Zhang, Jiexiang Zeng, Jianyu Jiang, Zijian Bai, Yan Wang, Fankai Zhang
{"title":"探索利用共晶双网相变微球制造温度可调的喷胶棉","authors":"Junwen Che, Hong Zhang, Jiexiang Zeng, Jianyu Jiang, Zijian Bai, Yan Wang, Fankai Zhang","doi":"10.1007/s10965-024-04134-w","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve effective temperature-regulated modification of spray-bonded cotton for superior thermal management capabilities, a dual-network phase transition microspheres (PCP) was developed through a one-step process using emulsion polymerization. This innovative approach incorporated eutectic polyethylene glycol (PEG) as the phase change component, chemically cross-linked polyacrylamide (PAM) as the first network, and ionically cross-linked calcium alginate (CA) as the second network. The PCP, which contains PEG solid-loaded in the dual network, was utilized as a modifier for the post-treatment of spray-bonded cotton using a coating technique. Key findings reveal that the effectively immobilization of PEG has been, without any abserved chemical reactions between PEG and PAM/CA. Additionally, PEG maintained its crystalline properties when combined with PAM/CA. The PCP exhibited a distinct morphology with smooth, spherical particles averaging round 5 μm in diameter. The optimized PCP sample exhibits a melting onset temperature of 37.20 °C, a melting enthalpy of 92.59 J·g<sup>−1</sup>, and impressive heat resistance. The resulting temperature-regulated spray-bonded cotton (TRSBC) displayed intelligent temperature control characteristics with a melting onset at 37.65 °C and a latent heat of 32.08 J·g<sup>−1</sup>. Compared to untreated spray-bonded cotton (USBC), TRSBC exhibited a notable delay effect in both heating and cooling processes, resulting in a temperature differential of 23.5 °C during heating and 16.3 °C during cooling, underscoring its superior temperature control capabilities. Research indicates that TRSBC possesses significant potential in thermal management applications, encompassing clothing, high-tech textiles, and temperature-regulating sandwich panels, thereby presenting considerable opportunities for commercial ventures.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the fabrication of temperature-regulated spray-bonded cotton using eutectic dual-network phase transition microspheres\",\"authors\":\"Junwen Che, Hong Zhang, Jiexiang Zeng, Jianyu Jiang, Zijian Bai, Yan Wang, Fankai Zhang\",\"doi\":\"10.1007/s10965-024-04134-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To achieve effective temperature-regulated modification of spray-bonded cotton for superior thermal management capabilities, a dual-network phase transition microspheres (PCP) was developed through a one-step process using emulsion polymerization. This innovative approach incorporated eutectic polyethylene glycol (PEG) as the phase change component, chemically cross-linked polyacrylamide (PAM) as the first network, and ionically cross-linked calcium alginate (CA) as the second network. The PCP, which contains PEG solid-loaded in the dual network, was utilized as a modifier for the post-treatment of spray-bonded cotton using a coating technique. Key findings reveal that the effectively immobilization of PEG has been, without any abserved chemical reactions between PEG and PAM/CA. Additionally, PEG maintained its crystalline properties when combined with PAM/CA. The PCP exhibited a distinct morphology with smooth, spherical particles averaging round 5 μm in diameter. The optimized PCP sample exhibits a melting onset temperature of 37.20 °C, a melting enthalpy of 92.59 J·g<sup>−1</sup>, and impressive heat resistance. The resulting temperature-regulated spray-bonded cotton (TRSBC) displayed intelligent temperature control characteristics with a melting onset at 37.65 °C and a latent heat of 32.08 J·g<sup>−1</sup>. Compared to untreated spray-bonded cotton (USBC), TRSBC exhibited a notable delay effect in both heating and cooling processes, resulting in a temperature differential of 23.5 °C during heating and 16.3 °C during cooling, underscoring its superior temperature control capabilities. Research indicates that TRSBC possesses significant potential in thermal management applications, encompassing clothing, high-tech textiles, and temperature-regulating sandwich panels, thereby presenting considerable opportunities for commercial ventures.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"31 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-024-04134-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04134-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Exploring the fabrication of temperature-regulated spray-bonded cotton using eutectic dual-network phase transition microspheres
To achieve effective temperature-regulated modification of spray-bonded cotton for superior thermal management capabilities, a dual-network phase transition microspheres (PCP) was developed through a one-step process using emulsion polymerization. This innovative approach incorporated eutectic polyethylene glycol (PEG) as the phase change component, chemically cross-linked polyacrylamide (PAM) as the first network, and ionically cross-linked calcium alginate (CA) as the second network. The PCP, which contains PEG solid-loaded in the dual network, was utilized as a modifier for the post-treatment of spray-bonded cotton using a coating technique. Key findings reveal that the effectively immobilization of PEG has been, without any abserved chemical reactions between PEG and PAM/CA. Additionally, PEG maintained its crystalline properties when combined with PAM/CA. The PCP exhibited a distinct morphology with smooth, spherical particles averaging round 5 μm in diameter. The optimized PCP sample exhibits a melting onset temperature of 37.20 °C, a melting enthalpy of 92.59 J·g−1, and impressive heat resistance. The resulting temperature-regulated spray-bonded cotton (TRSBC) displayed intelligent temperature control characteristics with a melting onset at 37.65 °C and a latent heat of 32.08 J·g−1. Compared to untreated spray-bonded cotton (USBC), TRSBC exhibited a notable delay effect in both heating and cooling processes, resulting in a temperature differential of 23.5 °C during heating and 16.3 °C during cooling, underscoring its superior temperature control capabilities. Research indicates that TRSBC possesses significant potential in thermal management applications, encompassing clothing, high-tech textiles, and temperature-regulating sandwich panels, thereby presenting considerable opportunities for commercial ventures.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.