Felix Huth, Ulrike Glaenzel, Anton Drollmann, Wendy Weis, Julia Zack, Lidiya Bebrevska
{"title":"icenticaftor(QBW251)与5探针细胞色素P450鸡尾酒和口服避孕药的药物相互作用","authors":"Felix Huth, Ulrike Glaenzel, Anton Drollmann, Wendy Weis, Julia Zack, Lidiya Bebrevska","doi":"10.1111/cts.70028","DOIUrl":null,"url":null,"abstract":"<p>A drug–drug interaction (DDI) study was conducted to evaluate the effect of icenticaftor (QBW251) on the pharmacokinetics (PK) of a 5-probe cytochrome P450 (CYP) substrate cocktail, guided by in vitro studies in human hepatocytes and liver microsomes. Another DDI study investigated the effect of icenticaftor on the PK and pharmacodynamics (PD) of a monophasic oral contraceptive (OC) containing ethinyl estradiol (EE) and levonorgestrel (LVG) in premenopausal healthy female subjects. The static-mechanistic DDI assessment indicated that icenticaftor may moderately induce the metabolic clearance of co-medications metabolized by CYP3A4 (area under the concentration–time curve [AUC] ratio: 0.47) and potentially CYP2C; icenticaftor may also weakly inhibit the metabolic clearance of co-medications metabolized by CYP1A2 and CYP3A4 (AUC ratio: 1.35 and 1.86, respectively) and moderately inhibit CYP2B6 (AUC ratio: 2.11). In the CYP substrate cocktail DDI study, icenticaftor 300 mg twice daily (b.i.d.) moderately inhibited CYP1A2 (AUC ratio: 3.35) and CYP2C19 (AUC ratio: 2.70). As expected from the results of the in vitro studies, weak induction was observed for CYP3A4 (AUC ratio: 0.51) and CYP2C8 (AUC ratio: 0.66). In the OC DDI study, co-administration of icenticaftor 450 mg b.i.d. with monophasic OC containing 30-μg EE and 150-μg LVG once daily reduced the plasma exposure of both components by approximately 50% and led to increased levels of follicle-stimulating hormone and luteinizing hormone. These results provide valuable guidance for the use of icenticaftor in patients taking concomitant medications that are substrates of CYP enzymes or patients using OCs.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70028","citationCount":"0","resultStr":"{\"title\":\"Drug–drug interactions of icenticaftor (QBW251) with a 5-probe cytochrome P450 cocktail and oral contraceptives\",\"authors\":\"Felix Huth, Ulrike Glaenzel, Anton Drollmann, Wendy Weis, Julia Zack, Lidiya Bebrevska\",\"doi\":\"10.1111/cts.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A drug–drug interaction (DDI) study was conducted to evaluate the effect of icenticaftor (QBW251) on the pharmacokinetics (PK) of a 5-probe cytochrome P450 (CYP) substrate cocktail, guided by in vitro studies in human hepatocytes and liver microsomes. Another DDI study investigated the effect of icenticaftor on the PK and pharmacodynamics (PD) of a monophasic oral contraceptive (OC) containing ethinyl estradiol (EE) and levonorgestrel (LVG) in premenopausal healthy female subjects. The static-mechanistic DDI assessment indicated that icenticaftor may moderately induce the metabolic clearance of co-medications metabolized by CYP3A4 (area under the concentration–time curve [AUC] ratio: 0.47) and potentially CYP2C; icenticaftor may also weakly inhibit the metabolic clearance of co-medications metabolized by CYP1A2 and CYP3A4 (AUC ratio: 1.35 and 1.86, respectively) and moderately inhibit CYP2B6 (AUC ratio: 2.11). In the CYP substrate cocktail DDI study, icenticaftor 300 mg twice daily (b.i.d.) moderately inhibited CYP1A2 (AUC ratio: 3.35) and CYP2C19 (AUC ratio: 2.70). As expected from the results of the in vitro studies, weak induction was observed for CYP3A4 (AUC ratio: 0.51) and CYP2C8 (AUC ratio: 0.66). In the OC DDI study, co-administration of icenticaftor 450 mg b.i.d. with monophasic OC containing 30-μg EE and 150-μg LVG once daily reduced the plasma exposure of both components by approximately 50% and led to increased levels of follicle-stimulating hormone and luteinizing hormone. These results provide valuable guidance for the use of icenticaftor in patients taking concomitant medications that are substrates of CYP enzymes or patients using OCs.</p>\",\"PeriodicalId\":50610,\"journal\":{\"name\":\"Cts-Clinical and Translational Science\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cts-Clinical and Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cts.70028\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Drug–drug interactions of icenticaftor (QBW251) with a 5-probe cytochrome P450 cocktail and oral contraceptives
A drug–drug interaction (DDI) study was conducted to evaluate the effect of icenticaftor (QBW251) on the pharmacokinetics (PK) of a 5-probe cytochrome P450 (CYP) substrate cocktail, guided by in vitro studies in human hepatocytes and liver microsomes. Another DDI study investigated the effect of icenticaftor on the PK and pharmacodynamics (PD) of a monophasic oral contraceptive (OC) containing ethinyl estradiol (EE) and levonorgestrel (LVG) in premenopausal healthy female subjects. The static-mechanistic DDI assessment indicated that icenticaftor may moderately induce the metabolic clearance of co-medications metabolized by CYP3A4 (area under the concentration–time curve [AUC] ratio: 0.47) and potentially CYP2C; icenticaftor may also weakly inhibit the metabolic clearance of co-medications metabolized by CYP1A2 and CYP3A4 (AUC ratio: 1.35 and 1.86, respectively) and moderately inhibit CYP2B6 (AUC ratio: 2.11). In the CYP substrate cocktail DDI study, icenticaftor 300 mg twice daily (b.i.d.) moderately inhibited CYP1A2 (AUC ratio: 3.35) and CYP2C19 (AUC ratio: 2.70). As expected from the results of the in vitro studies, weak induction was observed for CYP3A4 (AUC ratio: 0.51) and CYP2C8 (AUC ratio: 0.66). In the OC DDI study, co-administration of icenticaftor 450 mg b.i.d. with monophasic OC containing 30-μg EE and 150-μg LVG once daily reduced the plasma exposure of both components by approximately 50% and led to increased levels of follicle-stimulating hormone and luteinizing hormone. These results provide valuable guidance for the use of icenticaftor in patients taking concomitant medications that are substrates of CYP enzymes or patients using OCs.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.