Robert Furstenberg, Andrew Shabaev, Tyler J. Huffman, Christopher A. Kendziora, R. Andrew McGill
{"title":"针对大量尺寸参数和光学常数创建高精度优化散射查找表的随机算法","authors":"Robert Furstenberg, Andrew Shabaev, Tyler J. Huffman, Christopher A. Kendziora, R. Andrew McGill","doi":"10.1016/j.jqsrt.2024.109191","DOIUrl":null,"url":null,"abstract":"<div><p>We report a novel algorithm for generating optimized look-up tables suitable for rapid evaluation of various light scattering parameters and other hard-to-evaluate functions. Our method uses a stochastic algorithm to minimize the number of look-up table points needed while achieving high accuracy and speed. As an example, we present a general Mie scattering look-up table applicable to a large range of size parameters (0.02 < <em>x</em> < 200) and most materials (organics, inorganics, minerals, metals etc.) with real and imaginary parts of the refractive index ranging from 0.2 to 5 and 0 to 5, respectively. The look-up table is up to 3500 times faster than evaluating the Mie analytical expressions (in Matlab). This method opens up new possibilities in detection algorithm development (e.g. large synthetic datasets for machine learning), inverse problems and all other problems where a large number of Mie scattering coefficients needs to be rapidly evaluated. Furthermore, this method is applicable to other, related scattering problems. For example, we also present look-up tables for scattering efficiencies for spheres on various substrates.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109191"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic algorithm for creating highly accurate optimized scattering look-up tables for a large range of size parameters and optical constants\",\"authors\":\"Robert Furstenberg, Andrew Shabaev, Tyler J. Huffman, Christopher A. Kendziora, R. Andrew McGill\",\"doi\":\"10.1016/j.jqsrt.2024.109191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a novel algorithm for generating optimized look-up tables suitable for rapid evaluation of various light scattering parameters and other hard-to-evaluate functions. Our method uses a stochastic algorithm to minimize the number of look-up table points needed while achieving high accuracy and speed. As an example, we present a general Mie scattering look-up table applicable to a large range of size parameters (0.02 < <em>x</em> < 200) and most materials (organics, inorganics, minerals, metals etc.) with real and imaginary parts of the refractive index ranging from 0.2 to 5 and 0 to 5, respectively. The look-up table is up to 3500 times faster than evaluating the Mie analytical expressions (in Matlab). This method opens up new possibilities in detection algorithm development (e.g. large synthetic datasets for machine learning), inverse problems and all other problems where a large number of Mie scattering coefficients needs to be rapidly evaluated. Furthermore, this method is applicable to other, related scattering problems. For example, we also present look-up tables for scattering efficiencies for spheres on various substrates.</p></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"329 \",\"pages\":\"Article 109191\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240732400298X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240732400298X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Stochastic algorithm for creating highly accurate optimized scattering look-up tables for a large range of size parameters and optical constants
We report a novel algorithm for generating optimized look-up tables suitable for rapid evaluation of various light scattering parameters and other hard-to-evaluate functions. Our method uses a stochastic algorithm to minimize the number of look-up table points needed while achieving high accuracy and speed. As an example, we present a general Mie scattering look-up table applicable to a large range of size parameters (0.02 < x < 200) and most materials (organics, inorganics, minerals, metals etc.) with real and imaginary parts of the refractive index ranging from 0.2 to 5 and 0 to 5, respectively. The look-up table is up to 3500 times faster than evaluating the Mie analytical expressions (in Matlab). This method opens up new possibilities in detection algorithm development (e.g. large synthetic datasets for machine learning), inverse problems and all other problems where a large number of Mie scattering coefficients needs to be rapidly evaluated. Furthermore, this method is applicable to other, related scattering problems. For example, we also present look-up tables for scattering efficiencies for spheres on various substrates.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.