Svetlana Avramov-Zamurovic , Vasanthi Sivaprakasam , Matthew B. Hart , John E. McCarthy
{"title":"携带轨道角动量的激光束从粒子散射:近场强度和相位数值研究","authors":"Svetlana Avramov-Zamurovic , Vasanthi Sivaprakasam , Matthew B. Hart , John E. McCarthy","doi":"10.1016/j.jqsrt.2024.109192","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction of the light carrying orbital angular momentum (OAM) with a single spherical particle is explored using a commercial multi-physics simulation platform. The scattering of light with wavelength of 0.532 µm from an ice particle is presented. The research focuses on studying the light-matter interface within an observation volume of radius 10 times the wavelength (5.32 µm) and present near-field magnitude and phase of the scattered field. We place the particle at the various locations of a Gaussian beam, as well as move it to through the vortex and annulus of the light that carries OAM with topological charges of 1, 2 and 3. The numerical solutions showcase the variations of the scattering field complex values and provide a valuable insight in the field behaviour near and inside the particle for different illumination. We show two and three-dimensional scattering field magnitude and phase spatial distributions and their correlations.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109192"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022407324002991/pdfft?md5=c4e23b77a0ca9ce81c939d92aaaa6fad&pid=1-s2.0-S0022407324002991-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Laser beam carrying orbital angular momentum scattering from a particle: Near-field intensity and phase numerical study\",\"authors\":\"Svetlana Avramov-Zamurovic , Vasanthi Sivaprakasam , Matthew B. Hart , John E. McCarthy\",\"doi\":\"10.1016/j.jqsrt.2024.109192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interaction of the light carrying orbital angular momentum (OAM) with a single spherical particle is explored using a commercial multi-physics simulation platform. The scattering of light with wavelength of 0.532 µm from an ice particle is presented. The research focuses on studying the light-matter interface within an observation volume of radius 10 times the wavelength (5.32 µm) and present near-field magnitude and phase of the scattered field. We place the particle at the various locations of a Gaussian beam, as well as move it to through the vortex and annulus of the light that carries OAM with topological charges of 1, 2 and 3. The numerical solutions showcase the variations of the scattering field complex values and provide a valuable insight in the field behaviour near and inside the particle for different illumination. We show two and three-dimensional scattering field magnitude and phase spatial distributions and their correlations.</p></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"329 \",\"pages\":\"Article 109192\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022407324002991/pdfft?md5=c4e23b77a0ca9ce81c939d92aaaa6fad&pid=1-s2.0-S0022407324002991-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324002991\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324002991","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Laser beam carrying orbital angular momentum scattering from a particle: Near-field intensity and phase numerical study
The interaction of the light carrying orbital angular momentum (OAM) with a single spherical particle is explored using a commercial multi-physics simulation platform. The scattering of light with wavelength of 0.532 µm from an ice particle is presented. The research focuses on studying the light-matter interface within an observation volume of radius 10 times the wavelength (5.32 µm) and present near-field magnitude and phase of the scattered field. We place the particle at the various locations of a Gaussian beam, as well as move it to through the vortex and annulus of the light that carries OAM with topological charges of 1, 2 and 3. The numerical solutions showcase the variations of the scattering field complex values and provide a valuable insight in the field behaviour near and inside the particle for different illumination. We show two and three-dimensional scattering field magnitude and phase spatial distributions and their correlations.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.