通过时空耦合分析加强对乙烯氧氯化反应器状态的预测性监测

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
{"title":"通过时空耦合分析加强对乙烯氧氯化反应器状态的预测性监测","authors":"","doi":"10.1016/j.psep.2024.09.033","DOIUrl":null,"url":null,"abstract":"<div><p>The production of polyvinyl chloride (PVC) encounters challenges stemming from the temporal and spatial coupling characteristics inherent in the fixed bed ethylene oxychlorination process. Consequently, the implementation of enhanced safety measures and risk reduction strategies becomes imperative. This study introduces a pioneering methodology leveraging a spectral temporal graph neural network. By leveraging reactor temperature data, spatial variable decoupling facilitated by the Fourier transform, and a self-attentive mechanism within graph neural networks, the proposed approach adeptly forecasts future reactor states. The model's seamless alignment with the physical knowledge of reaction processes, validated through the adjacency matrix and hotspot region identification, underscores its efficacy in ensuring process safety and mitigating operational risks in PVC production. Empirical findings further validate the effectiveness of the approach, with predictions demonstrating an error margin of less than 0.5°C in forecasting future reactor temperatures.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing predictive monitoring of ethylene oxychlorination reactor states through spatiotemporal coupling analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.09.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The production of polyvinyl chloride (PVC) encounters challenges stemming from the temporal and spatial coupling characteristics inherent in the fixed bed ethylene oxychlorination process. Consequently, the implementation of enhanced safety measures and risk reduction strategies becomes imperative. This study introduces a pioneering methodology leveraging a spectral temporal graph neural network. By leveraging reactor temperature data, spatial variable decoupling facilitated by the Fourier transform, and a self-attentive mechanism within graph neural networks, the proposed approach adeptly forecasts future reactor states. The model's seamless alignment with the physical knowledge of reaction processes, validated through the adjacency matrix and hotspot region identification, underscores its efficacy in ensuring process safety and mitigating operational risks in PVC production. Empirical findings further validate the effectiveness of the approach, with predictions demonstrating an error margin of less than 0.5°C in forecasting future reactor temperatures.</p></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024011583\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024011583","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于固定床乙烯氧氯化工艺固有的时间和空间耦合特性,聚氯乙烯(PVC)的生产遇到了挑战。因此,实施强化安全措施和降低风险战略势在必行。本研究介绍了一种利用光谱时间图神经网络的开创性方法。通过利用反应器温度数据、傅立叶变换促进的空间变量解耦以及图神经网络中的自注意机制,所提出的方法能够巧妙地预测反应器的未来状态。通过邻接矩阵和热点区域识别验证,该模型与反应过程的物理知识实现了无缝对接,突出了其在确保工艺安全和降低聚氯乙烯生产运营风险方面的功效。实验结果进一步验证了该方法的有效性,预测未来反应器温度的误差小于 0.5°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing predictive monitoring of ethylene oxychlorination reactor states through spatiotemporal coupling analysis

The production of polyvinyl chloride (PVC) encounters challenges stemming from the temporal and spatial coupling characteristics inherent in the fixed bed ethylene oxychlorination process. Consequently, the implementation of enhanced safety measures and risk reduction strategies becomes imperative. This study introduces a pioneering methodology leveraging a spectral temporal graph neural network. By leveraging reactor temperature data, spatial variable decoupling facilitated by the Fourier transform, and a self-attentive mechanism within graph neural networks, the proposed approach adeptly forecasts future reactor states. The model's seamless alignment with the physical knowledge of reaction processes, validated through the adjacency matrix and hotspot region identification, underscores its efficacy in ensuring process safety and mitigating operational risks in PVC production. Empirical findings further validate the effectiveness of the approach, with predictions demonstrating an error margin of less than 0.5°C in forecasting future reactor temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信