蒸汽-水双热源 ORC 系统的非设计性能优化

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
{"title":"蒸汽-水双热源 ORC 系统的非设计性能优化","authors":"","doi":"10.1016/j.psep.2024.09.041","DOIUrl":null,"url":null,"abstract":"<div><p>High-pressure steam and hot water often coexist as industrial waste heat. In this study, dual loop and single loop ORC systems are designed for 700 kPa, 4.1 kg/s steam, and 90 ℃, 122.36 kg/s hot water conditions to study the off-design performance when steam or hot water conditions change. To maximize net output power, we employ a particle swarm optimization algorithm to optimize the evaporation and condensation temperatures. The results show that within the specified hot water conditions, the evaporation and condensation temperatures of D-ORC's low-pressure loop and S-ORC increase with rising hot water inlet temperature and flow rate. The S-ORC demonstrates a higher net output power growth rate as hot water flow rate and temperature rise. Under specific steam conditions, when the steam outlet is in a gas-liquid two-phase state, D-ORC's maximum net output power is 1.7 % higher than that of the S-ORC, with little variation in optimal evaporation and condensation temperatures with respect to steam inlet pressure. At a 3.5 kg/s steam flow rate, the D-ORC's high-pressure loop becomes ineffective, whereas S-ORC efficiently adjusts heat exchange capacity under diverse steam-water conditions, Consequently, the D-ORC's average net output power is 34.2 % lower than that of the S-ORC.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-design performance optimization for steam-water dual heat source ORC systems\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.09.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-pressure steam and hot water often coexist as industrial waste heat. In this study, dual loop and single loop ORC systems are designed for 700 kPa, 4.1 kg/s steam, and 90 ℃, 122.36 kg/s hot water conditions to study the off-design performance when steam or hot water conditions change. To maximize net output power, we employ a particle swarm optimization algorithm to optimize the evaporation and condensation temperatures. The results show that within the specified hot water conditions, the evaporation and condensation temperatures of D-ORC's low-pressure loop and S-ORC increase with rising hot water inlet temperature and flow rate. The S-ORC demonstrates a higher net output power growth rate as hot water flow rate and temperature rise. Under specific steam conditions, when the steam outlet is in a gas-liquid two-phase state, D-ORC's maximum net output power is 1.7 % higher than that of the S-ORC, with little variation in optimal evaporation and condensation temperatures with respect to steam inlet pressure. At a 3.5 kg/s steam flow rate, the D-ORC's high-pressure loop becomes ineffective, whereas S-ORC efficiently adjusts heat exchange capacity under diverse steam-water conditions, Consequently, the D-ORC's average net output power is 34.2 % lower than that of the S-ORC.</p></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095758202401173X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095758202401173X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

高压蒸汽和热水通常作为工业废热并存。在本研究中,双回路和单回路 ORC 系统分别针对 700 kPa、4.1 kg/s 蒸汽和 90 ℃、122.36 kg/s 热水条件进行设计,以研究蒸汽或热水条件发生变化时的非设计性能。为了使净输出功率最大化,我们采用了粒子群优化算法来优化蒸发和冷凝温度。结果表明,在指定的热水条件下,D-ORC 低压回路和 S-ORC 的蒸发和冷凝温度会随着热水入口温度和流量的上升而升高。随着热水流量和温度的上升,S-ORC 的净输出功率增长率更高。在特定的蒸汽条件下,当蒸汽出口处于气液两相状态时,D-ORC 的最大净输出功率比 S-ORC 高 1.7%,最佳蒸发和冷凝温度与蒸汽入口压力的关系变化不大。当蒸汽流速为 3.5 kg/s 时,D-ORC 的高压回路失效,而 S-ORC 则能在不同的蒸汽-水条件下有效调节热交换能力,因此 D-ORC 的平均净输出功率比 S-ORC 低 34.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-design performance optimization for steam-water dual heat source ORC systems

High-pressure steam and hot water often coexist as industrial waste heat. In this study, dual loop and single loop ORC systems are designed for 700 kPa, 4.1 kg/s steam, and 90 ℃, 122.36 kg/s hot water conditions to study the off-design performance when steam or hot water conditions change. To maximize net output power, we employ a particle swarm optimization algorithm to optimize the evaporation and condensation temperatures. The results show that within the specified hot water conditions, the evaporation and condensation temperatures of D-ORC's low-pressure loop and S-ORC increase with rising hot water inlet temperature and flow rate. The S-ORC demonstrates a higher net output power growth rate as hot water flow rate and temperature rise. Under specific steam conditions, when the steam outlet is in a gas-liquid two-phase state, D-ORC's maximum net output power is 1.7 % higher than that of the S-ORC, with little variation in optimal evaporation and condensation temperatures with respect to steam inlet pressure. At a 3.5 kg/s steam flow rate, the D-ORC's high-pressure loop becomes ineffective, whereas S-ORC efficiently adjusts heat exchange capacity under diverse steam-water conditions, Consequently, the D-ORC's average net output power is 34.2 % lower than that of the S-ORC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信