关于 Zr-Nb 合金中合金元素铌与间隙/空位之间的相互作用:第一原理研究

IF 1.4 3区 物理与天体物理 Q3 INSTRUMENTS & INSTRUMENTATION
Tun Chen , Zhipeng Sun , Qing Hou , Jiechao Cui , Min Li , Jun Wang , Baoqin Fu
{"title":"关于 Zr-Nb 合金中合金元素铌与间隙/空位之间的相互作用:第一原理研究","authors":"Tun Chen ,&nbsp;Zhipeng Sun ,&nbsp;Qing Hou ,&nbsp;Jiechao Cui ,&nbsp;Min Li ,&nbsp;Jun Wang ,&nbsp;Baoqin Fu","doi":"10.1016/j.nimb.2024.165531","DOIUrl":null,"url":null,"abstract":"<div><p>Zirconium-niobium alloy is widely used in pressurized-water-reactors (PWRs) due to its excellent performance. Herein, the effects of Nb on the formation, migration, and clustering of vacancies/interstitials in Zr-Nb solid solution are studied using first-principles calculations. Nb lowers the formation energy of Zr interstitials and significantly enhances the anisotropy of Zr interstitial migration in the vicinity. Nb shows thermodynamic attraction to vacancies while causes a significant decrease in the vacancy migration barrier, which enhances the mobility of vacancies around Nb. In addition, we find that the vacancy-mediated Nb migration is anisotropic, and these Nb-vacancy interactions play an important role in revealing the mechanism of the precipitation of needle-like Nb phases under high irradiation fluences. Finally, we verified the anisotropic attraction of Nb to vacancies with CI-NEB method. These findings will contribute to a more in-depth comprehension on the mechanism how Nb influences the evolution process of irradiation defects in Zr-Nb alloys.</p></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"557 ","pages":"Article 165531"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the interactions between alloying element niobium and interstitial/vacancy in Zr-Nb alloy: A first-principles study\",\"authors\":\"Tun Chen ,&nbsp;Zhipeng Sun ,&nbsp;Qing Hou ,&nbsp;Jiechao Cui ,&nbsp;Min Li ,&nbsp;Jun Wang ,&nbsp;Baoqin Fu\",\"doi\":\"10.1016/j.nimb.2024.165531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zirconium-niobium alloy is widely used in pressurized-water-reactors (PWRs) due to its excellent performance. Herein, the effects of Nb on the formation, migration, and clustering of vacancies/interstitials in Zr-Nb solid solution are studied using first-principles calculations. Nb lowers the formation energy of Zr interstitials and significantly enhances the anisotropy of Zr interstitial migration in the vicinity. Nb shows thermodynamic attraction to vacancies while causes a significant decrease in the vacancy migration barrier, which enhances the mobility of vacancies around Nb. In addition, we find that the vacancy-mediated Nb migration is anisotropic, and these Nb-vacancy interactions play an important role in revealing the mechanism of the precipitation of needle-like Nb phases under high irradiation fluences. Finally, we verified the anisotropic attraction of Nb to vacancies with CI-NEB method. These findings will contribute to a more in-depth comprehension on the mechanism how Nb influences the evolution process of irradiation defects in Zr-Nb alloys.</p></div>\",\"PeriodicalId\":19380,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"volume\":\"557 \",\"pages\":\"Article 165531\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168583X2400301X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X2400301X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

锆铌合金因其优异的性能而被广泛应用于压水反应堆(PWR)。本文利用第一原理计算研究了铌对 Zr-Nb 固溶体中空位/间隙的形成、迁移和聚集的影响。铌降低了 Zr 间隙的形成能,并显著增强了附近 Zr 间隙迁移的各向异性。铌显示出对空位的热力学吸引力,同时导致空位迁移障碍显著降低,从而提高了空位在铌周围的迁移率。此外,我们还发现空位介导的铌迁移是各向异性的,这些铌-空位相互作用在揭示高辐照通量下针状铌相的析出机制方面发挥了重要作用。最后,我们用 CI-NEB 方法验证了铌对空位的各向异性吸引力。这些发现将有助于更深入地理解铌如何影响 Zr-Nb 合金中辐照缺陷的演化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the interactions between alloying element niobium and interstitial/vacancy in Zr-Nb alloy: A first-principles study

Zirconium-niobium alloy is widely used in pressurized-water-reactors (PWRs) due to its excellent performance. Herein, the effects of Nb on the formation, migration, and clustering of vacancies/interstitials in Zr-Nb solid solution are studied using first-principles calculations. Nb lowers the formation energy of Zr interstitials and significantly enhances the anisotropy of Zr interstitial migration in the vicinity. Nb shows thermodynamic attraction to vacancies while causes a significant decrease in the vacancy migration barrier, which enhances the mobility of vacancies around Nb. In addition, we find that the vacancy-mediated Nb migration is anisotropic, and these Nb-vacancy interactions play an important role in revealing the mechanism of the precipitation of needle-like Nb phases under high irradiation fluences. Finally, we verified the anisotropic attraction of Nb to vacancies with CI-NEB method. These findings will contribute to a more in-depth comprehension on the mechanism how Nb influences the evolution process of irradiation defects in Zr-Nb alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
231
审稿时长
1.9 months
期刊介绍: Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信