{"title":"用于水下导航的最大熵多项式混沌卡尔曼滤波器","authors":"Rohit Kumar Singh, Joydeb Saha, Shovan Bhaumik","doi":"10.1016/j.dsp.2024.104774","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops an underwater navigation solution that utilizes a strapdown inertial navigation system (SINS) and fuses a set of auxiliary sensors such as an acoustic positioning system, Doppler velocity log, depth meter, and magnetometer to accurately estimate an underwater vessel's position and orientation. The conventional integrated navigation system assumes Gaussian measurement noise, while in reality, the noises are non-Gaussian, particularly contaminated by heavy-tailed impulsive noises. To address this issue, and to fuse the system model with the acquired sensor measurements efficiently, we develop a square root polynomial chaos Kalman filter based on maximum correntropy criteria. The proposed method uses Hermite polynomial chaos expansion to tackle the nonlinearity, and it has the potential to estimate the states in a more accurate way in presence of a non-Gaussian measurement noise. The filter is initialized using acoustic beaconing to accurately locate the initial position of the vehicle. The computational complexity of the proposed filter is calculated in terms of flops count. The proposed method is compared with the existing maximum correntropy sigma point filters in terms of estimation accuracy and computational complexity. It is found from the simulation results that the proposed method is more accurate compared to the conventional deterministic sample point filters and Huber's M-estimator.</p></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"155 ","pages":"Article 104774"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum correntropy polynomial chaos Kalman filter for underwater navigation\",\"authors\":\"Rohit Kumar Singh, Joydeb Saha, Shovan Bhaumik\",\"doi\":\"10.1016/j.dsp.2024.104774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper develops an underwater navigation solution that utilizes a strapdown inertial navigation system (SINS) and fuses a set of auxiliary sensors such as an acoustic positioning system, Doppler velocity log, depth meter, and magnetometer to accurately estimate an underwater vessel's position and orientation. The conventional integrated navigation system assumes Gaussian measurement noise, while in reality, the noises are non-Gaussian, particularly contaminated by heavy-tailed impulsive noises. To address this issue, and to fuse the system model with the acquired sensor measurements efficiently, we develop a square root polynomial chaos Kalman filter based on maximum correntropy criteria. The proposed method uses Hermite polynomial chaos expansion to tackle the nonlinearity, and it has the potential to estimate the states in a more accurate way in presence of a non-Gaussian measurement noise. The filter is initialized using acoustic beaconing to accurately locate the initial position of the vehicle. The computational complexity of the proposed filter is calculated in terms of flops count. The proposed method is compared with the existing maximum correntropy sigma point filters in terms of estimation accuracy and computational complexity. It is found from the simulation results that the proposed method is more accurate compared to the conventional deterministic sample point filters and Huber's M-estimator.</p></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"155 \",\"pages\":\"Article 104774\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424003993\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424003993","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Maximum correntropy polynomial chaos Kalman filter for underwater navigation
This paper develops an underwater navigation solution that utilizes a strapdown inertial navigation system (SINS) and fuses a set of auxiliary sensors such as an acoustic positioning system, Doppler velocity log, depth meter, and magnetometer to accurately estimate an underwater vessel's position and orientation. The conventional integrated navigation system assumes Gaussian measurement noise, while in reality, the noises are non-Gaussian, particularly contaminated by heavy-tailed impulsive noises. To address this issue, and to fuse the system model with the acquired sensor measurements efficiently, we develop a square root polynomial chaos Kalman filter based on maximum correntropy criteria. The proposed method uses Hermite polynomial chaos expansion to tackle the nonlinearity, and it has the potential to estimate the states in a more accurate way in presence of a non-Gaussian measurement noise. The filter is initialized using acoustic beaconing to accurately locate the initial position of the vehicle. The computational complexity of the proposed filter is calculated in terms of flops count. The proposed method is compared with the existing maximum correntropy sigma point filters in terms of estimation accuracy and computational complexity. It is found from the simulation results that the proposed method is more accurate compared to the conventional deterministic sample point filters and Huber's M-estimator.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,