Reza Moini, Fabian Rodriguez, Jan Olek, Jeffrey P. Youngblood, Pablo D. Zavattieri
{"title":"三维打印螺旋水泥基结构材料在压缩条件下的力学性能和断裂现象","authors":"Reza Moini, Fabian Rodriguez, Jan Olek, Jeffrey P. Youngblood, Pablo D. Zavattieri","doi":"10.1617/s11527-024-02437-4","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical response and fracture behavior of two architected 3D-printed hardened cement paste (hcp) elements, ‘lamellar’ and ‘Bouligand’, were investigated under uniaxial compression. A lab-based X-ray microscope was used to characterize the post-fracture crack pattern. The mechanical properties and crack patterns were analyzed and compared to cast hcp. The role of materials architecture and 3D-printing-induced weak interfaces on the mechanical properties and fracture behavior are discussed. The pore architecture that inadvertently forms in the design of solid architected materials dictated the overall mechanical response and fracture behaviors in both 3D-printed architected materials. While no specific crack pattern or microcracking was observed in the cast element, lamellar architecture demonstrated a crack pattern following weak vertical interfaces. Bouligand architectures, on the other hand, exhibited a helical crack pattern with distributed interfacial microcracking aligned with the helical orientation of filaments. As a result, the bouligand architected elements showed a significant 40% increase in work-of-failure compared to cast counterparts. The enhanced energy absorption was obtained without sacrificing the strength and was attributed to higher fractured surface and microcracking, both of which follow the weak helical interfaces.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02437-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties and fracture phenomena in 3D-printed helical cementitious architected materials under compression\",\"authors\":\"Reza Moini, Fabian Rodriguez, Jan Olek, Jeffrey P. Youngblood, Pablo D. Zavattieri\",\"doi\":\"10.1617/s11527-024-02437-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical response and fracture behavior of two architected 3D-printed hardened cement paste (hcp) elements, ‘lamellar’ and ‘Bouligand’, were investigated under uniaxial compression. A lab-based X-ray microscope was used to characterize the post-fracture crack pattern. The mechanical properties and crack patterns were analyzed and compared to cast hcp. The role of materials architecture and 3D-printing-induced weak interfaces on the mechanical properties and fracture behavior are discussed. The pore architecture that inadvertently forms in the design of solid architected materials dictated the overall mechanical response and fracture behaviors in both 3D-printed architected materials. While no specific crack pattern or microcracking was observed in the cast element, lamellar architecture demonstrated a crack pattern following weak vertical interfaces. Bouligand architectures, on the other hand, exhibited a helical crack pattern with distributed interfacial microcracking aligned with the helical orientation of filaments. As a result, the bouligand architected elements showed a significant 40% increase in work-of-failure compared to cast counterparts. The enhanced energy absorption was obtained without sacrificing the strength and was attributed to higher fractured surface and microcracking, both of which follow the weak helical interfaces.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"57 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-024-02437-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02437-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02437-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mechanical properties and fracture phenomena in 3D-printed helical cementitious architected materials under compression
The mechanical response and fracture behavior of two architected 3D-printed hardened cement paste (hcp) elements, ‘lamellar’ and ‘Bouligand’, were investigated under uniaxial compression. A lab-based X-ray microscope was used to characterize the post-fracture crack pattern. The mechanical properties and crack patterns were analyzed and compared to cast hcp. The role of materials architecture and 3D-printing-induced weak interfaces on the mechanical properties and fracture behavior are discussed. The pore architecture that inadvertently forms in the design of solid architected materials dictated the overall mechanical response and fracture behaviors in both 3D-printed architected materials. While no specific crack pattern or microcracking was observed in the cast element, lamellar architecture demonstrated a crack pattern following weak vertical interfaces. Bouligand architectures, on the other hand, exhibited a helical crack pattern with distributed interfacial microcracking aligned with the helical orientation of filaments. As a result, the bouligand architected elements showed a significant 40% increase in work-of-failure compared to cast counterparts. The enhanced energy absorption was obtained without sacrificing the strength and was attributed to higher fractured surface and microcracking, both of which follow the weak helical interfaces.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.