Bianlei Hao, Guangchao Sun, Fatang Xu, Lunliang Zhang, Kaiqi Liu
{"title":"通过成分调节抑制刚玉-莫来石隔热瓦的热传递","authors":"Bianlei Hao, Guangchao Sun, Fatang Xu, Lunliang Zhang, Kaiqi Liu","doi":"10.1111/jace.20100","DOIUrl":null,"url":null,"abstract":"<p>The increase in size and efficiency of gas turbines leads to higher temperature in the combustion chamber, putting greater demands on the performance of the thermal insulation tiles. Corundum–mullite has been used because of its high-temperature resistance, thermal shock resistance, and low thermal conductivity. However, how to inhibit heat transfer through composition regulation while ensuring the safe use of high-temperature insulation tiles is the key to improving the heat conversion efficiency of gas turbines. In this study, thermal insulation tiles were prepared by casting molding. On the basis of determining the optimal corundum/mullite ratio (22:45 wt%) in the aggregate, the thermal conductivity of the sample was reduced by adding MgO (2 wt%). The results show that phonon intrinsic and defect scattering, caused by changes in phase composition, effectively reduce the thermal conductivity of the insulation tile sample to 2.05 W·m<sup>−1</sup>·K<sup>−1</sup>, which is 34.71 % lower than the maximum value before regulation. During 30 cycles of thermal shock (air-cooling at 1000°C), the residual strength gradually decreased and tended to be stable, with a minimum of 8.6 MPa, indicating that the thermal insulation tile can provide better thermal insulation without affecting the safety of gas turbines, providing new ideas and methods for improving the thermal insulation performance of high-temperature thermal insulation materials.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8530-8546"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer inhibition of corundum–mullite insulation tiles through composition regulation\",\"authors\":\"Bianlei Hao, Guangchao Sun, Fatang Xu, Lunliang Zhang, Kaiqi Liu\",\"doi\":\"10.1111/jace.20100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increase in size and efficiency of gas turbines leads to higher temperature in the combustion chamber, putting greater demands on the performance of the thermal insulation tiles. Corundum–mullite has been used because of its high-temperature resistance, thermal shock resistance, and low thermal conductivity. However, how to inhibit heat transfer through composition regulation while ensuring the safe use of high-temperature insulation tiles is the key to improving the heat conversion efficiency of gas turbines. In this study, thermal insulation tiles were prepared by casting molding. On the basis of determining the optimal corundum/mullite ratio (22:45 wt%) in the aggregate, the thermal conductivity of the sample was reduced by adding MgO (2 wt%). The results show that phonon intrinsic and defect scattering, caused by changes in phase composition, effectively reduce the thermal conductivity of the insulation tile sample to 2.05 W·m<sup>−1</sup>·K<sup>−1</sup>, which is 34.71 % lower than the maximum value before regulation. During 30 cycles of thermal shock (air-cooling at 1000°C), the residual strength gradually decreased and tended to be stable, with a minimum of 8.6 MPa, indicating that the thermal insulation tile can provide better thermal insulation without affecting the safety of gas turbines, providing new ideas and methods for improving the thermal insulation performance of high-temperature thermal insulation materials.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"8530-8546\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20100\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20100","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Heat transfer inhibition of corundum–mullite insulation tiles through composition regulation
The increase in size and efficiency of gas turbines leads to higher temperature in the combustion chamber, putting greater demands on the performance of the thermal insulation tiles. Corundum–mullite has been used because of its high-temperature resistance, thermal shock resistance, and low thermal conductivity. However, how to inhibit heat transfer through composition regulation while ensuring the safe use of high-temperature insulation tiles is the key to improving the heat conversion efficiency of gas turbines. In this study, thermal insulation tiles were prepared by casting molding. On the basis of determining the optimal corundum/mullite ratio (22:45 wt%) in the aggregate, the thermal conductivity of the sample was reduced by adding MgO (2 wt%). The results show that phonon intrinsic and defect scattering, caused by changes in phase composition, effectively reduce the thermal conductivity of the insulation tile sample to 2.05 W·m−1·K−1, which is 34.71 % lower than the maximum value before regulation. During 30 cycles of thermal shock (air-cooling at 1000°C), the residual strength gradually decreased and tended to be stable, with a minimum of 8.6 MPa, indicating that the thermal insulation tile can provide better thermal insulation without affecting the safety of gas turbines, providing new ideas and methods for improving the thermal insulation performance of high-temperature thermal insulation materials.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.