在对称离散无记忆信道上学习多速率任务导向通信

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Anbang Zhang;Shuaishuai Guo
{"title":"在对称离散无记忆信道上学习多速率任务导向通信","authors":"Anbang Zhang;Shuaishuai Guo","doi":"10.1109/LCOMM.2024.3450598","DOIUrl":null,"url":null,"abstract":"This letter introduces a multi-rate task-oriented communication (MR-ToC) framework. This framework dynamically adapts to variations in affordable data rate within the communication pipeline. It conceptualizes communication pipelines as symmetric, discrete, memoryless channels. We employ a progressive learning strategy to train the system, comprising a nested codebook for encoding and task inference. This configuration allows for the adjustment of multiple rate levels in response to evolving channel conditions. The results from our experiments show that this system not only supports edge inference across various coding levels but also excels in adapting to variable communication environments.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 10","pages":"2303-2307"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Multi-Rate Task-Oriented Communications Over Symmetric Discrete Memoryless Channels\",\"authors\":\"Anbang Zhang;Shuaishuai Guo\",\"doi\":\"10.1109/LCOMM.2024.3450598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a multi-rate task-oriented communication (MR-ToC) framework. This framework dynamically adapts to variations in affordable data rate within the communication pipeline. It conceptualizes communication pipelines as symmetric, discrete, memoryless channels. We employ a progressive learning strategy to train the system, comprising a nested codebook for encoding and task inference. This configuration allows for the adjustment of multiple rate levels in response to evolving channel conditions. The results from our experiments show that this system not only supports edge inference across various coding levels but also excels in adapting to variable communication environments.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 10\",\"pages\":\"2303-2307\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10649033/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10649033/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了一种面向任务的多速率通信(MR-ToC)框架。该框架可动态适应通信管道内可负担数据速率的变化。它将通信管道概念化为对称、离散、无记忆通道。我们采用渐进式学习策略来训练系统,其中包括用于编码和任务推理的嵌套编码本。这种配置允许根据不断变化的信道条件调整多个速率级别。实验结果表明,该系统不仅支持不同编码级别的边缘推理,而且在适应多变的通信环境方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Multi-Rate Task-Oriented Communications Over Symmetric Discrete Memoryless Channels
This letter introduces a multi-rate task-oriented communication (MR-ToC) framework. This framework dynamically adapts to variations in affordable data rate within the communication pipeline. It conceptualizes communication pipelines as symmetric, discrete, memoryless channels. We employ a progressive learning strategy to train the system, comprising a nested codebook for encoding and task inference. This configuration allows for the adjustment of multiple rate levels in response to evolving channel conditions. The results from our experiments show that this system not only supports edge inference across various coding levels but also excels in adapting to variable communication environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信